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ABSTRACT 

​
Our goal with this capstone project is to improve the performance and user interface of the 

current microfluidic droplet sorting system used in the lab. Improving the sorting system is 

done by allowing the high throughput of droplets to feed the sorting channel while 

maintaining high sorting purity. We developed an automated system that sorts the 

electrodes based on the droplets size by designing the controller, and GUI (General User 

Interface).  The main function of the controller is to actuate the electrodes for specified 

duration set by the user. The GUI is there to offer the user a real-time image through the 

microscope camera with real-time spectrometer response, control over the syringe pumps, 

and send parameters to control the sorting settings. The design process described in this 

report is separated into 3 main categories, the micro controller, the GUI, and the sorting 

algorithm. We managed to build a successfully working prototype that meets most of the 

criteria that we set ourselves in the first phase of the project.​
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1.​ INTRODUCTION 

This report encloses the inspiration, design, and implementation of an automated 

microfluidic binary droplet sorter. 

1.1.​ Objective 

The goal of this project is to design and create a control board that can be connected to a 

microfluidic system to sort a stream of droplets based on a binary channel and a detection 

signal. The system would provide high efficiency with rapid droplet sorting actuation. The 

hardware will be supported by a user interface that allows the user to configure the sorting 

parameters and monitor various aspects of the operations. The designed system would be 

modular and interface with existing automation infrastructure. 

1.2.​ Project Outlines 

The project was planned to take place in four phases, efficiently splitting the work into 

bursts of tasks undertaken over two months each. 

First, a controller platform was chosen from the requirements elicited during Phase 1. Once 

the controller was chosen, the design specification was updated with data from the 

controller’s datasheets. 

System implementation alternatives were evaluated in Phase 1. While choosing controllers 

in Phase 2, controller platforms alternatives were also being shortlisted for comparison. 

Controller platforms alternatives evaluation was split into two types, FPGA vs. 

microcontroller. 

Detailed quantitative analysis and discussions of FPGA and micro-controller were carried out 

to determine that the micro-controller was the better. Then, various microcontrollers that fit 

our specifications were listed. Online benchmarks were then used to evaluate the better 

controller model. 

The team then moved on to research and plan out the implementation by choosing 

communication protocols, a real-time operating system to sort droplets in real-time, GUI 

language, etc.  

GUI design evaluation was next, with modifications being proposed to existing Droplet 

Sorter GUI. Wireframes of suggested GUI layout were brainstormed, and a final UI design 

was planned. 

Phase 3 was planned for the design and development of the prototype.  

Controller development was carried out on the teensy USB-based development board. The 

code is written in C++/Arduino. The sorting algorithm was developed as a Real Time 

Operating system. An RTOS system is required in this project to handle incoming detection 

signals and process them in a timely manner. The control algorithm was first implemented 

using the port of FreeRTOS for the Teensy 4.1 and then later, development was carried on 



 

another RTOS platform called ChibiOS. This switch in the RTOS platform was due to some 

issues we encountered with FreeRTOS that will be discussed later in this report. 

 

GUI implementation was developed in a Microsoft Windows environment using Python. The 

decision to continue development on Windows was to meet the stakeholder’s requirement. 

PyQt5 is the framework we used to design the GUI. Further details are discussed in later 

sections of this paper. 

Lastly, the testing and analysis of the system. Before individual modules were put together, 

the GUI was tested for itself, and tests were conducted to make sure the GUI was bug free. 

Once passed, the GUI was merged with different hardware components to test the overall 

system using an oscilloscope. 

 



 

2.​ DESIGN 

2.1.​ Controller Design 

2.1.1.​ Controller Design Specification 

The control board we decided to use for this project is the Teensy 4.1 microcontroller. It can 

operate under an input voltage of 3.3V to 5V through its VIN pin or 5V USB cable. The board 

features 55 digital I/O pins and a clock speed of 600 MHz and can be overclocked of up to 

1GHz. The maximum current consumption for the board at max speed is at around 100mA. 

The controller will also be very portable due to the minimal dimension of only 36.8mm in 

length, 18.0mm in width and 4.6mm in height. At minimum droplet actuation our system 

will be able to sort at least 1000 droplets per second while the typical value should be in the 

range of 1200 droplets and a high of 1500 droplets. As most of the existing solutions have 

high sort purity percentage in the range of 95% or above, we plan to design our system 

within that range so it can produce a meaningful output for the users. The system we design 

should be able to control at least 110 electrodes while the typical number of electrodes 

should be 150 and a high of 200 electrodes. 

Table 1 Controller Specification 

# Description/Parameter Test 
Condition 

Value Unit 
Min. Typ. Max. 

1. Droplet Actuation Normal 1000 1200 1500 droplets/secon
d 

2. Sort Purity Normal 95 97 99 % 
3. Electrode Communication Path Normal 110 150 200 paths 
4. Dimensions (L/W/H)   36.8

/ 
18.0
/ 
4.6 

 mm 

5. Input Voltage (DC): 
1.​ USB Cable Power: 

2.​ VIN pin 

Normal  
 
3.3 

 
5 
 

 
 
5 

 
V 
V 

6. Current Consumption at 
600MHz 

  100  mA 

7. Digital Input/Output   55  pins 
8. I/O Pins: 

1.​ Voltage Output 

2.​ Current Output 

3.​ Voltage Input 

  
 
 
0 

 
3.3 
10 
 

 
 
 
3.3 

 
V 
mA 
V 

9. Clock Speed Normal 24 600 1000 MHz 
10
. 

Operational Temperature  0  80 °C 



 

11
. 

Storage Temperature  -30  70 °C 

12
. 

Relative Humidity Non-conden
sing 

  80 % 

 

 

2.1.2.​ Microcontroller choices 

 

Table 2 FPGA vs Microcontroller 

 Criteria 

Importance 

Weight 
FPGA Board Microcontroller 

 0-1 
Score 

(0-1) 
Score*W 

Score 

(0-1) 
Score*W 

Cost 0.75 0.25 0.1875 1 0.75 

Portability 0.75 0.5 0.375 1 0.75 

Processing Speed 1 1 1 0.8 0.8 

Development 

Simplicity 
0.75 

0.25 
0.1875 

1 
0.75 

Power consumption 0.25 0.25 0.0625 1 0.25 

Total:     1.8125   3.3 

 

The decision matrix table above shows the difference in scoring between the two control 

board choices, microcontroller, and FPGA board. The low scoring of FPGA boards in terms of 

cost is due to its price being much more expensive than that of microcontroller. Since 

portability is one of the main criteria for the project, the scoring of the microcontroller is 

much higher than the FPGA board due to its small form factor in terms of size and weight. 

One could argue that FPGA should have higher portability scoring since it has hundreds of 

I/O pins that can replace the current optocoupler switching board giving it more advantages 

compared to microcontroller. However, the FPGA board still needs the switching board to 

switch on/off high voltage, and it is only replacing the existing port expander on the 

switching board which has minimal footprint on the PCB design, making it a lower scoring 

compared to the microcontroller. In terms of complexity, microcontrollers will have a higher 

scoring due to its simplicity in terms of the development languages and the number of 

resources available online compared to FPGA where one would need advanced knowledge 

in designing digital circuits, VHDL and signal processing techniques in low level systems. 

Other factors such as processing speed is also an important factor to consider, under those 

circumstances, FPGA scored higher compared to the microcontroller due to its extremely 



 

fast processing speed through parallelization and versatile configurations. However, the 

same parallelization processing can be achieved using a PC with multithreading and 

multiprocessing and use the microcontroller as a switch since one of the requirements for 

the project is to have a graphical user interface interacting with the sorting system. As a 

result, with the processing work being offloaded on the PC side, the overall processing could 

potentially be as fast as an FPGA board.  For the last factor, power consumption, 

microcontrollers usually consume much less power than FPGA due to its lower processing 

power. From the above scores, the microcontroller is clearly a better selection than the 

FPGA for the main reasons the microcontrollers usually cost much less than FPGA, higher 

portability, almost identical processing speed as well as the knowledge required around 

microcontrollers such as Arduino and C/C++ are much more commonly used and much 

simpler than the hardware description languages such as VHDL and Verilog used for FPGA 

board. 

2.2.​ Graphical User Interface Design 

2.2.1.​ Graphical User Interface Design Specification 

Trying to offer maximum control over the sorting system to the user, the following specifications were 
identified.  Additionally, the team strived to give the user the ability to view spectrometer output and 
microscope camera output through the interface itself. 

Table 3 Graphical User Interface Specification 

1 User should be able to make connection with the microfluidic sorting controller 
2 User should be able to see all the interactable electrodes through the interface 
3 User should be able to assign functionality to each/group of electrodes 
4 User should be able to set the trigger threshold  

 

Due to the considerable number of external variables in effect during sorting procedure like 

droplet size, speed and amount of fluorescence in the droplet to name a few, it would have 

been exceedingly difficult to implement an exhaustive mapping that sets sorting parameters 

based on droplet parameters. Hence, tuning of certain sorting parameters will have to be 

done by the user. 

The following few sections will highlight the features of the final UI design and its usage. 

2.2.2.​ Graphical User Interface Framework Selection 

In phase 2, the design phase, we decided to go with developing our graphical user interface 

using Tkinter framework which is the framework that previous graphical user interface was 

developed on. However, due the abstract and cumbersome user interface design for 

complex graphical user interface, and a lack of designing tools, we decided to go with PyQt5 

framework due to the complex designing tools that the framework provides, Qt Designer 

Tool, and lots of learning resources available online.  



 

2.2.3.​ Configuration Page 

In the configuration page, the user would be able to connect to the controller and change 

various parameters corresponding to the bench set up such as Flame Spectrometer 

integration time, droplet travel time in the fluid channel and the duration that the sorting 

electrode stays high. 

 

Figure 1 Configuration Page 

Shown in Figure 1 is the Configuration window with text fields and Buttons organized into 

panels. The menu bar is visible throughout the interface and contains two button groups.  

2.2.4.​ Workspace directory and Sorting Control 

The button group on the left of this group, shown in Fig. X can be used set the ​
​ workspace directory. The blue ‘Play’ button starts sorting, while the red ‘Pause’ ​
​ button stops sorting. Before changing parameters, it is advised to stop the ​
​ ​ sorting process and start it again after sending set parameters to the 

controller. 

 

Figure 2 Workspace Directory and Sorting Control button group 

The ‘Background Subtraction’ checkBox relates to the Spectrometer view and ​
​ removes noise from the detection signal. This operation makes the detection signal 

​ from droplets to-be sorted, more apparent when there is luminescence from it.  

 



 

2.2.5.​ Redock Camera and Configuration Control 

This button group contains four buttons. The microscope camera view is rendered in a ​  

widget that can be dragged around, resized and docked to the user interface. The first ​
button with the microscope icon re-docks this camera viewer widget to the interface. 

 

Figure 3 Redock Camera and Configuration Control button group 

The second button with the ‘box and gear’ icon opens a file explorer window and 

allows the user to load an existing configuration to avoid having to set all the 

parameters again. The ‘Save As’ button next to it saves the current configuration to a 

directory of choice using the file explorer. 

The last button on the right gives the user an option to set the current configuration 

as default and loads said configuration whenever the application is launched. 

 

Next, the purpose and usage of the various panels for setting parameters are discussed 

below.  

2.2.6.​ Microcontroller Configuration 

This panel allows the user to select the controller device from a list of external 

devices connected to the workstation. One can then connect to the microcontroller 

using the ‘Connect’ button.  

The ‘Send Param’ button sends the current parameter values in the Droplet and 

Electrode Configuration panel to the controller. This operation is mandatory after 

setting new parameters as they will be used by the microcontroller to determine 

electrode actuation delay. 

The textField below these buttons shows connection status, and current parameters 

when they are sent to the controller.  

 

2.2.7.​ Flame Spectrometer Configuration 

The parameters for the flame spectrometer are set from this panel. As can be seen 

​ ​ below in Fig. X, there are a lot of parameters that affect the ability to sort 

droplets ​ successfully. 



 

 

Figure 4 Flame Spectrometer Configuration panel 

The ‘Integration Time’ parameter influences the intensity of the luminescence ​
​ detected. Droplets with a lot of fluorescence would require less integration time as 

the ​  light emitted is strong enough to produce a detection signal. The speed of the 

droplets ​  was also found to be proportional to the integration time. 

The flame spectrometer also comes with a strobe lamp that can be controlled from 

the ​  UI itself. The time period of pulses can be set using the ‘Period” textField. The strobe 

​  lamp can also be used in ‘Continuous Mode’ without pulses using the ‘Strobe ​
​ Lamp Continuous Mode.’ 

For advanced control over data acquisition, the ‘Trigger Mode’ list allows the user to 

​ set data acquisition to only occur after an external event triggered by hardware ​
​ voltage or synchronization events like button pushes. The trigger mode is by default 

​ set to ‘NORMAL’ where data acquisition is done continuously. 

 

2.2.8.​ Droplet and Electrode Configuration 

The microchannel and electrode activation parameters can be set from this panel. As 

shown below, there are four values that can be set. 

 

Figure 5 Droplet and Electrode Configuration panel 

The time that the droplet takes from the moment it passes the spectrometer probe 

till it reaches the sorting electrodes, defines the ‘Droplet Travel Time’. This parameter 

affects when the sorting electrode is activated and hence must be accurately set to 

achieve highest efficiency of sorting. 



 

The ‘Pulse Time’ sets how long the sorting electrode remains at high voltage. The 

pulse time was found to be proportional to the droplet size from trials. The voltage 

being sent to the electrode from the amplifier also influences the pulse time 

inversely. 

The number of droplets that are generated by the microfluid channel would be set as 

the ‘Number of Droplet’ parameter. The parameter will be used to limit the number 

of electrode actuations in that timeframe. 

The electrode number corresponding to the pin that the electrode connects to on 

the port expander, would be set as the ‘Sorting Electrode.’  

  

As supplementary features that allow for control over the full microfluid system, there are 

two extra panels for managing the NEMESYS pumps and the microscope camera. 

2.2.9.​ NEMESYS Pump Configuration 

The NEMESYS Pump system has 5 pumps which can each be configured using this 

panel. As changing the pump configuration can lead to adverse effects on the 

microfluid channel, editing these parameters is disabled by default. The ‘Advanced 

Setting’ checkBox must be selected to do so. 

 

Figure 6 NEMESYS Pump Configuration panel 

Initially, the user must connect to the pump system using the ‘Connect’ button. The 

user can also load prior configurations using the file browser provided.  



 

The ‘NEMESYS System Status’ window displays the status of each pump. The user can 

change the syringe’s swept volume using the ‘Syringe Diameter’ and ‘Syringe Stroke’ 

textFields.  

The new settings are then applied for selected pumps using the ‘Calibrate’ button. 

 

2.2.10.​Camera Configuration 

Lastly, through the Camera Configuration panel, the user can adjust the camera 

viewer window size using the ‘Width’ and ‘Height’ parameters in pixels. The user has 

control over the exposure time of the camera. Varying this parameter can give better 

image resolution and quality. 

 

Figure 7 Camera Configuration panel 

2.2.11.​Spectrometer View Page 

Clicking the ‘View’ button switches pages to the Spectrometer View Page, allowing the user 

to view the detection signal being output by the Flame spectrometer. The user must initially 

select the spectrometer to be used from a list of available devices. The user also configures 

the detection range that would cause the sorting electrode to activate.  



 

 

Figure 8 Spectrometer View page 

Whenever sorting is started using the blue ‘Play’ button, the graph view will start showing 

spectrometer output as a function of light intensity in RFU (Relative Fluorescence Units) and 

the wavelength of light in nanometers. 

There are two panels in this page which are discussed below. 

2.2.12.​Detection Range Configuration 

The window of detection which triggers a droplet sorting event can be set from this 

panel. The minimum and maximum ranges of wavelength and intensity for sorting 

form a rectangular detection window.  

 

 

Figure 9 Detection Range Configuration panel 

 



 

2.2.13.​Pump control 

To avoid crowding the Configuration Page, pump flow control is provided on the 

Spectrometer view page. The user can set the flow rate of the desired pump in uL 

and start or stop the pump using the appropriate buttons provided next to each 

pump. 

 

Figure 10 Pump Control panel 

 

2.2.14.​Chip Viewer Page 

The Chip Viewer page, shown in Fig. 11 allows users to manually control electrodes. Three 

buttons on the right allow users to clear all the electrodes on the scene, load an existing 

electrode configuration or save the current electrodes on the scene as a .yaml configuration 

file. 

Furthermore, there are two textFields below the buttons. The electrode number 

corresponding to the sorting electrode is entered in the first textField. The second textField 

takes in the pulse time in uS; the duration for which the electrode is active. Once entered, 

the user simply clicks on ‘Electrode,’ which renders an electrode object and drags it into to 

scene on the left. 



 

  

Figure 11 

With the electrode on the scene, the user can click on the electrode object which will trigger 

corresponding electrode activation. This feature is intended to be used for testing and tuning 

of the sorting parameters. 

 

Figure 12 

 

2.3.​ Usage of the MicroSort User Interface 

2.3.1.​ Setting up electrodes and starting sorting 

The general use case for a user setting up the system for sorting is shown below in Fig. 13 



 

 

Figure 13 

 

When the MicroSort UI is initialized, the user must first establish a connection with the 

sorting controller using the Microcontroller Configuration panel in the Configuration page. 

When connection is attempted, a message containing the connection status and port are 

displayed in the panel.  

The user can then set various sorting parameters in accordance with their setup and then 

send the new values to the controller using the ‘Send Param’ button in the same page. 

Confirmation of the parameters being downloaded on the controller can be seen on the 

textField below the ‘Send Param’ button. 

The user must finally switch to the Spectrometer View page to input the detection range for 

which droplets are sorted. Setting the range completes the setup and automated sorting can 

be started by pressing the blue ‘Play’ button on the menu bar.  

For the spectrometer view to work as intended, care should be taken to ensure that the 

spectrometer device is recognized by the user interface and is selected in the list below the 

detection signal graph view.  



 

2.4.​ Development 

This section will only discuss the main functionality and structure of several functions in the 

system. Detailed implementation can be found in the project source code. 

2.4.1.​ Controller development 

The controller in our project is responsible for sorting the droplet once a detection signal is 

received from the host computer. The two main functions of the controller are to listen for 

droplet sorting events and once an event is received the controller should be able to sort the 

droplet by actuating the electrode at the right time to sort only the droplet of interest out of 

the stream of droplets. The controller has also an auxiliary function that permits the user to 

apply sorting parameters to the controller through the GUI application. The parameters are 

also sent through serial, the controller parses the sent parameters and immediately applies 

them with minimal interruption to the sorting process. 

 

To be able to continuously listen for droplet detection messages as well as sorting (turning 

on/off the electrodes in the right sequence at the right time), we must be able to run both 

functions in a non-blocking fashion, this means that both functions should continuously run. 

In a multicore system, each core would be responsible of running the detection thread and 

the sorting separately in parallel. In our case the best option is to use a Real Time Operating 

System with a cooperative schedule to run both functions in separate threads achieving near 

parallel processing.  

The RTOS algorithm consists mainly of 3 main components. 2 threads, one thread to monitor 

the Serial bus and listens for any event that indicates the detection of a droplet, and a 

second thread responsible of sorting droplets once the thread is notified that a droplet is 

available for sorting. this thread will then actuate the electrode accordingly in a timely 

manner. The third main component is a Queue that serves as a link between the two 

threads. Once a droplet serial event is received, the detection threads notify the sorting 

thread of the availability of a droplet to be sorted through the queue. The detection thread 

enqueues a timestamped event in the queue signifying the presence of a droplet to be 

sorted. The sorting thread continuously monitors the presence of elements in the queue, 

once an element in the queue is available, the sorting thread dequeues the element and 

using the delay and electrode number parameters set by the user (travel delay, pulse delay, 

sorting electrode) as well as the timestamp of when the event was received, the thread will 

accordingly turn on or off the electrode. 

Here is an example run on how the algorithm handles the sorting of droplets: for this 

example, the travel delay is chosen to be 3 seconds while the onTime (pulse) delay is chosen 

to be 2 sec. this translate to once a droplet is detected wait 3 seconds until the droplets 

arrives near the sorting channel and turn on the sorting electrode for 2 seconds. 

 



 

The detection signal is sent through serial from the GUI application at t=0s, the detection 

thread is continuously monitoring the serial inputs and detect the serial event.  

 

Figure sorting14 signal received from host at t-0s 

 The detection thread will create then two events to be put in the event queue, one ON 

event and one OFF event (the order in which these two event are enqueued is important, 

the ON event is first enqueued followed by the OFF event, this is because you first turn on 

the sorting electrode then turn it off and the queue is FIFO (first in first out) data structure), 

both event will be timestamped with the time at which the event was received from the 

host, in this case the timestamp is 0s. 

 

Figure 15 Detection thread puts event in event Queue 



 

The sorting thread is continuously monitoring the event queue, so once event elements are 

in the queue, the sorting thread will dequeue the first available event. Since this is an ON 

event, the sorting thread will turn on the sorting electrode when the current time is equal to 

the timestamp time + the travel delay. The timestamp time represents the time at which the 

droplet was received. 

 

Figure 16 Sorting thread to turn on electrode 

The sorting thread will then go ahead and dequeue the next available event in the queue 

which is the OFF event with the same timestamp (t=0s). in this case the sorting thread will 

turn off the electrode when time is equal the timestamp + the traval delay + onTime delay, 

since the travel delay was already elapsed the electrode will be turned off after the onTime 

delay is elapsed, so the electrode was turned on after 3 seconds and stayed on for 3 seconds 

then turned off again. 



 

 

Figure 17 Sorting thread to turn off electrode 

 

This algorithm is implemented using the Teensy 4.1 port of ChibiOS an RTOS platform very 

optimized for teensy products allowing to run the schedule in tickless mode and obtain time 

resolution down to the microsecond which is necessary when sorting very high throughput 

droplet streams. 

2.4.2.​ Graphical User Interface Development 

The Graphical User Interface was developed on the Windows operating system using the 

PyQt5 framework. Unlike the Tkinter which was first used in the project PyQt allows us to 

organize the UI scripts separately from the functionality. Because one of our goals was to 

make the software portable, we decided PyQt as our main framework. GUI as following. The 

figure below shows that an instance of Ui_MainWindow is instantiated in the APP classes 

and passed to each page along with the instance of the microcontroller. This coding style 

allows us to link the GUI elements to the functionality without polluting the class of each 

page, hence better maintained. As it can be seen the APP contains 3 pages namely 

ConfigurationPage where the user can set parameters for the system, ViewPage where the 

real-time data from the spectrometer is displayed on the chart and Image from the 

microscope, lastly ChipViewPage provides manual control of the electrodes to the user.  



 

 

Figure 18 UI Architecture 

   

2.4.3.​ Configuration Page 

For the configuration page user interface elements, there are 5 configuration boxes namely 

are microcontroller configuration, flame spectrometer configuration, pump configuration, 

droplet configuration and camera configuration. The configuration page implementation was 

differed from our previous planned design in Phase 1 and Phase 2 due to that more features 

were added to Graphical User Interface. In the configuration page, the user will be able to 

establish communication with the microcontroller, the pump, and be able to set up/ tune all 

the parameters for the sorting system. The detail design of the configuration page is in the 

configPage.py file where all the user interface elements are linked to a specific function, as 

for the placement of the user interface elements, it is being stored in the GUI.py file where 

we generated from Qt Designer app using uiGenerate.py file which convert GUI.ui file to 

GUI.py file.  

The detail implementations of the configuration page are stored in configPage class where in 

the first initialization of the object, it will take the user interface element object from the 

main window, the microcontroller object so it can establish communication with the 

microcontroller, and it also take the user interface elements initialized in the view page class 

for tool bar user interface elements access. Next, it will initialize the pump and thread pool 

object so it can be used later for pump functions manipulation. The class will then load the 

configuration file which is named config.yml stored in the default file path using the custom 

function called ymlFileReader where it will be able to set all the previously saved user input 

parameters. The class will also limit user to only be able to input number only in the 



 

configuration parameter boxes using PyQt5 built in number validator function. The config 

page class also responsible for set up part of the user interface elements for the pump 

configuration boxes as the number of pumps will be dynamically loaded on startup based on 

the available pumps connected to the system. The microcontroller connect button clicked 

action will automatically connect to the microcontroller board using the microcontroller 

object previous passed. It will then send the parameters to the microcontroller namely are 

the droplet travel time, pulse time and the sorting electrode to the microcontroller. With the 

clicked of the send param button, it will send the current configuration parameters to the 

microcontroller. As for when the pump connect button is clicked, it will send all the user 

inputs parameters and the configuration file of the NEMESYS pumps to set up the 

connection with the all the pumps and will show the status of the bus if the connection is 

successful or failed.  

 

Figure 19 caption 



 

2.4.4.​ Spectrometer View Page 

With the spectrometer view page, there are three main elements in the page, first will be 

the real time spectrometer view where it will be used to display the data from the 

spectrometer, upper right corner of the spectrometer view will be the update rate of the 

plot. The second element in the spectrometer view page is the detection rage configuration 

where user will be input the desired gates for detection. Last element in the spectrometer 

view will be the pump control where user will be able to control the 5 pumps available in the 

current system where the actions are start and stop and flow rate input and display. Similar 

to the config page user interface elements, the spectrometer view page user interface 

elements placement is stored in the GUI.py file. The detail design of the spectrometer view 

page is stored in the viewPage.py file. 

At first, the view page class will take the user interface elements from the main window and 

the microcontroller board object. After that, the class will set up the tool bar user interface 

elements namely are the add, delete folder path button, folder path display, start sorting, 

stop sorting, connection list reloading, camera view startup, load configuration file, save 

current configuration as and save current configuration to the default config file. The set-up 

tool bar function will also link all the action to the corresponding action. Next, the class will 

set up a number validator for user input to the detection gates input and load the 

spectrometer list to the spectrometer option box. The class will also initialize a queue 

worker thread, required multiprocessing events to communicate with sorting process. When 

the start button is clicked on the toolbar, it will connect to start sorting function, at first, the 

function will check if the child process exists, if not it will check all the user input parameters 

making sure that it is not empty. After that, it will create a child process where the queue 

and previously created events will be passed to the child process for communication 

between the GUI process and the sorting process. Finally, the function will create a separate 

thread in the GUI to actively listening to data sent from other process so it can be plot in the 

spectrometer view. When the stop button is clicked, it will trigger a stop event to other 

process to stop the sorting and sending data to plot, if the other process did not stop after 1 

second, the parent process will terminate it and set the process variable back to none. 

Another main function in the class is the camera view function where when the camera view 

button is clicked it will create a new subprocess and send all the required parameters for 

camera set up such as the window width, height, and camera exposure time. In the 

subprocess file, the startMonitor.py file, it will create the Hamamatsu camera instance using 

the received parameters and display the frame on a new window using OpenCV API.  



 

 

Figure 20 caption 

 

2.4.5.​ Chip Viewer Page 

The ChipViewPage used two custom classes namely CustomGraphicButton and 

CustomGraphicScene. CustomGraphicButton is extended from QGraphicItems. Two methods 

are overwritten to add the custom action when the user click its instance. Backend API of 

the PyQt5 triggers an event based on the user’s mouse action. The method 

mousePressedEvent is invoked and signal is sent to the controller to actuate the selected 

electrode for the preset time. CustomGraphicScene is extended from QGraphicScene. 

Similar to the CustomGraphicButton class, some of the methods are overwrote to add 

custom actions. The method dropEvent is invoked when the user drags and drop a new 

electrode from the right side of the scene, it creates the instance of the 

CustomGraphicButton object. The dragMoveEvent method accept the drags and drop event 

of the previously created CustomButton object. Lastly ChipViewPage has few methods to 

help user save the current configuration of the electrodes in YAML file and load the 

electrodes from a previously saved YAML file.  ​ ​  



 

 

Figure 21 caption 

 

2.4.6.​ Thread Workers 

There are two main worker classes namely are the pump worker and queue worker. The 

pump worker main functionality is to execute pump functions so multiple pumps can run 

concurrently through QThreadPool that was implemented in the configPage.py file. As for 

the queue worker, it will actively be listening to the spectrometer data available in the queue 

so when if data is available, it can be sent to plot in the spectrometer view. The two workers 

implementation are stored in the threadWorker.py file.  

2.4.7.​ Microcontroller Communication in Graphical User Interface Process 

The communication between the Graphical User Interface process and the microcontroller is 

taken placed in the microcontrollerCom.py file. The implementation of the class is at first, 

the class will load the available comports that are connected to the system. After that, it will 

load the port mapping file that being stored in the developing folder where each port is map 



 

corresponding to the chip design. There are 4 main functionalities being implemented in the 

class namely are the open selected comport, get data from serial port, close serial port and 

write parameter to the connected port. The functionality of opening the comport is that it 

will set up the connection with the selected comport, set the baud rate, open read and write 

channel and connect data handling to the get data function when data is available. The get 

data function is that it will first convert the received data to bytes type and decode it to utf8 

format and append the converted data to the microcontroller console. For the close 

comport method, it will first check if there are any connections available, if yes, it will 

terminate the port and set the port variable to none. Finally, for the write param function, it 

will take in the droplet travel time, pulse time and electrode to be switched parameters, 

convert it to string and send it to the microcontroller board.  

2.4.8.​ Yaml File Reader 

The ymlFileRead.py file provides a way for the graphical user interface to load and save the 

configuration parameters from the yml file. There are four main functions in the file which 

are the saveConfig, loadConfig, saveElectrodes and loadElectrodes. The first two functions 

will load and save all the parameter to and from the graphical user interface. The last two 

functions will be responsible for loading and save the electrode configuration in the chip 

viewer page.  

2.4.9.​ Sorting Process and Flame Data Processing Class 

The main processing of the spectrometer is being done in the sorting process where the 

implementation is being stored in the sortingProcess.py file. The process at first will take in 

the parameters sent from the queue and use it to initialize the data process class which 

being implemented in the getFlameData.py file. After initialization of the class, it submits the 

three main tasks to the thread pool that are the get spectrometer data, process 

spectrometer data and send data to plot functions. For the data acquisition the seabreeze 

API will provide us the intensity and wavelength. As for the data process of spectrometer, it’s 

first subtracted the most recent data to the background noise previous acquired in the data 

process class initialization, after that, it will check if there are any values that is greater than 

the predefined gates, if so, it will send a trigger signal to the microcontroller board. The data 

process function is being optimized via Numba JIT decoration function and Numpy API. 

Finally for the send data to plot function, it will take the spectrometer data, concatenate the 

wavelength array and intensity array, and send it to queue for the GUI process to plot the 

data.  

 

 

2.5.​ Problems Encountered 

2.5.1.​ Controller 

In our phase 2 report an alternative but similar RTOS sorting algorithm was proposed where, 

instead of having a queue-based system, each time a droplet is detected the detection 

thread would create a temporary thread to sort the droplet that gets deleted once the 



 

sorting of the particular droplet is done. In this case each droplet will have its own thread 

spawned by the detection thread to actuate the electrode at the right time. This structure 

worked fine and got good results while testing, but a major problem soon arises where, the 

temporary task is done sorting and is deleted, the heap memory allocated to that task is not 

freed, so after roughly 1000 creation/deletion of tasks, the system would run out of heap 

memory.  

At the same time, we ran into another problem concerning the frequency at which FreeRTOS 

runs its schedule. FreeRTOS is not capable of context switching of less than 100 

microseconds, this limits the resolution at which threads can be executed for. In our case, we 

needed precision in the range of 20 to 30 microseconds. Also once the scheduler is running, 

the time function millis() and micros() available on the teensy become unusable. 

2.5.2.​ Graphical User Interface 

There are 4 problems we have faced during the implementation of the graphical user 

interface which are the execution time of the detection function, the real time plotting, 

Python Global Interpreter Lock and Spectrometer View and Camera View unresponsiveness.  

2.5.3.​ Detection Function Execution Time  

Python is known to be a slow interpreter language. The reason for that is because the code 

is compiled on the fly. It takes significantly longer time to execute the code compared to 

other language like C and C++. The execution time can also be influenced a lot depends on 

the computing environment. For example, if many processes are running on the user’s PC, 

the Windows OS maybe preoccupied with other processes. Since our project requires real 

time response, between different component of the systems, it is very important for the 

detection task finished in a reasonable time frame based on the scheduled tasks table. Using 

the pure python implementation for the detection algorithm, the below figure shows the 

execution time of it over one million runs.  



 

 

Figure 22 caption 

The mean execution time of the function is to be around 55 microseconds, and the 

fluctuation of execution between run is very large around 500 microseconds. The 

percentage number of runs with execution time less than one hundred microseconds is to 

be around 87% which in term defined our sorting purity for the system as if an execution 

taking longer than the predefined range means a missing droplet. Hence, it is not fit for our 

design specification where we need a high sorting purity percentage.  

2.5.4.​ Real Time Plotting 

Another problem when implementing our design was that the delay of updating the 

spectrometer view. The fact that in our first implementation of the design, we used the 

built-in multiprocessing module of PyQt5 which is the QProcess function. It has a very slow 

communication speed between the two processes where the only mean of communication 

between the two process is via system standard output write where all the values must be in 

string format. The fact that we need to convert a large array with 4096 elements of float to 

string (sender side) and convert the string back to array of float (receiver side), it caused a 

huge delay when updating the plot, up to 2 seconds after the actual data received from the 

spectrometer. Hence, real time plot was not possible using the PyQt5 built in 

multiprocessing function. 

2.5.5.​ Python Global Interpreter Lock 

Python Global Interpreter Lock is a type of mutex (lock) where it only allows one thread to 

be run at a time to avoid the racing condition of values between threads. With that in mind, 

it is beating the purpose of concurrent run of tasks. Since with our application, we need to 



 

execute multiple tasks in parallel namely are the data acquisition, sending the detection 

signal to the microcontroller and sending data for real time plot. It is important for us to be 

able to bypass the GIL to fully utilize the processing capability of the processor and 

maximizing sorting system throughput.  

2.5.6.​ Spectrometer View and Camera View Unresponsiveness 

While trying to embed the camera feature to the graphical user interface, we encountered 

the unresponsiveness when running the spectrometer view and camera view at the same 

time. The reason for that is due to two tasks were running in two threads and the amount of 

works among two threads are quite significant. It creates the unresponsiveness in the 

graphical interface itself which is very undesirable for our application where the 

responsiveness of the graphical user interface is critical for controlling the sorting system.  

2.6.​ Solution Proposed 

2.6.1.​ Controller 

The solution we came up with is to switch to development in ChibiOS/RT. ChibiOS/RT is 

another real-time operating system for embedded application. It offers a preemptive and 

cooperative multi-tasking scheduler with priority levels and multi-threading primitives, 

including mutexes, condition variables and semaphores. ChibiOS is very optimized for the 

Teensy 4.1 and permits the use of the tickless mode. In this context switching is not done in 

a fixed interval but rather in a variable one depending on the different priorities and yield 

parameters of your different tasks. ChibiOS also provides timing function precise to the 

microsecond and also is compatible with the usage of Teensy’s native timing functions 

millis() and micros(). 

As for the algorithm, we changed how the sorting is handled by transitioning from a 

temporary thread system to an event queue system, where droplet events are queued and a 

sorting thread sorts the droplets based on the events in the queue, a full explanation of the 

current algorithm is available in the design section of this report. 

2.6.2.​ Graphical User Interface 

Each of the four problems encountered were solved using the methods highlighted below. 

2.6.3.​ Detection Function Execution Time Solution 

To combat the inconsistence run time of the detection function and to obtain a much higher 

sorting purity for our application, we came up with several solutions namely are moving the 

whole system to LINUX operating system, using C or C++ for the detection function or using 

Just In Time technology. With the simplicity of use and a very prominent solution, we went 

with using Numba, an API where it compiles python code into binary machine code for a 

much faster and consistence execution time. By combining Numba with Numpy which is an 

API with thin wrapper around optimized C functions for mathematical operations, the 

achieved execution speed was 10 fasters than the pure python implementation.  To further 

increase the stability of the execution time, we also change the sorting process priority to 



 

high to prevent interruption from other process with the sorting process, giving a fully 

optimize detection function for our application.   

 

 

Figure 23 caption 

The mean execution time of the detection using Numba and Numpy is to be around 4.9 

microseconds which is a significant improvement over the previous implementation for the 

detection function. Not only that, but the variance between runs were also significantly less 

with only one to two microseconds difference between runs. With over a million run of the 

function, the percentage of number of runs that are less than 100 microseconds is to be 

around 99.9996% which is perfectly fit with our application where fast and consistence 

execution time of tasks are important. 

2.6.4.​ Real Time Plotting Solution 

The solution for fast update rate of the spectrometer view is to use the python 

multiprocessing module where the communication between processes can be done through 

queue. The fact that users can pass object element through the queue and require no 

conversion of array of float to string and convert the string back to array of float saves a 

significant amount of time. It makes the real time spectrometer view possible as data 

received from the spectrometer, array of 4096 elements can be sent directly to the graphical 

user interface process to be plot without any conversion of the data. Noticing that queue 

have a limit amount of memory size, managing the size of data to be send is also very 



 

important as deadlock might occur during the sending and receiving data between 

processes.  

2.6.5.​ Python Global Interpreter Lock Solution 

With the implementation of Numba, we were also able to bypass the Global Interpreter Lock 

as the codes are being converted into binary code and the lock will also be released giving 

multitasking functionality in python possible. As for our case, the used of Numba for lock 

released were implemented for the detection function and data concatenation function 

which concatenate the data to be send for plotting. Hence the three threads, spectrometer 

data acquisition, detection function and process data to be sent for plot can be run 

concurrently. 

2.6.6.​  Spectrometer View and Camera View Unresponsiveness Solution 

The solution to solve the problem to offload the camera feature into a new process. We 

created another subprocess where it can be run in a separate process preserving the same 

performance of both the spectromerter and camera view without compromising the sorting 

performance which is hosted in another separate process. 

2.7.​ Future Development 

2.7.1.​ Optocoupler Board  

One of the main bottlenecks for our current system is caused by the switching speed of the 

optocoupler board. With the current design using the MAX7300AAI+ port expander with the 

I2C write speed of 400 KHz, it takes 72 microseconds to turn on/off a pin and an addition of 

turn on/off delay of the photoMOS relay, AQW216H of around 250 microseconds making the 

total delay of around 320 microseconds per execution on or off. To reduce the delay of 

switching, we came up with a design where two modifications on the current design were 

made. The first is that the MAX7300AAI+ can be replaced by the MAX7301AAI+ version 

where it used the SPI communication protocol which have a write speed of 26MHz that is 65 

times faster than the current chip giving the turn on/off a pin on the port expander to be 

around 1 microsecond. The second modification is that we add an Inrush Current Circuit 

before the input stage of the photoMOS relay where it can exploit the inrush current 

property to first increase the current passing through LED significantly and later reduce it to 

improve the life span of the LED. According to the datasheet of the AQW216H photoMOS 

shows in figure x, with higher current input to the LED will result in a much faster switch 

on/off time. Hence, with our modification, it will provide a faster turn on time and turn off 

time for the photoMOS relay.  The circuit design is shown in figure x. 
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Figure 25 caption 

By using PSPICE, the below graph shows the transient response of the inrush current circuit 

where at first the current going through the photoMOS’s LED get a significant boost of up to 

20ma and later reduced to 12.5 ma due to capacitor are fully charge up and the current path 



 

has to pass the second resistor of 220 ohms which in term reduce the current flowing 

through the LED. The theoretical turn on time/ turn off time for our circuit based on the 

design and the data sheet provided by the manufacturer will be around 180 microseconds. 

As a result, the modified circuit will be able to decrease the total delay to be around 181 

microseconds per execution on or off which is 1.8 times faster than the current design.  

 

Figure 26 caption 

2.7.2.​ Chip Viewer 

With our implementation of the chip viewer feature, future work on it can allow various of 

droplet manipulation techniques to be implemented by controlling the sequence on time/off 

time of the electrode arrays. In addition, the save and load schematic feature will allow a 

flexible configuration of many different droplet manipulation functions in microfluidics 

technology. 

2.7.3.​ Camera Viewer 

The current implementation of the camera view is using OpenCV to display the frame 

captured from Hamamatsu Camera in a separate process. Future work on the camera 

feature can be expanded to many different areas by using the built-in functionality of 

OpenCV or in combination with many available image processing API for object detection, 

tracking and machine learning to be able to fully analyze droplet movement autonomously 

using the technologies. Noticing that, for high-speed droplet analysis, a need of high-speed 

camera is critical to capture the motion of the droplet.  

 



 

3.​ RESULTS OBTAINED 

3.1.​ Timing Analysis   

Based on our project requirement of 1000 droplets or more we should expect to set the 

time between two consecutive electrodes’ actuation signals as 1milli second or less. 

However, because our current spectrometer can spit out raw data approximately every 2.5 

milli seconds, our sorting system can handle up to 400 droplets. The delta value of Figure A 

represents the time between the two consecutive signals measured in the oscilloscope.  

Figure B and C represent the delay of the I2C signal. B shows that it takes approximately 350 

microseconds for electrode to be turned off completely after the I2C signal is sent. C shows 

that time between the I2C signal is sent and Electrode to be turn on. It was recorded as 240 

microseconds.  

Figure D,E,F represents the results from the test when the integration time is set to be 600 

microseconds. Figure D shows that I2C signals are sent precisely every 600 microseconds. 

Figure F shows that electrodes are fully on for precisely 600 microseconds of duration. 

Figure E shows that error of I2C is as small as 72 microseconds.         
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Figure F32 

 

 

Figure 33  High throughput 1600 droplets 

 



 

3.2.​ Test Cases 

 

Table 4 Test Cases 

I
D 
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on 

1 Team Check: 
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1.​ Open 

up the 

GUI 
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The 
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port  

3.​ Send  

Sorting 
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ers 
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can 
make a 
change 
to the 
default 
sorting 
parame
ters 
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microfluidic 
sorting 
controller 
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the 
controll
er as we 
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d 

Pass 
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Oscillosco
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t: 
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1.​ Open 
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GUI 
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3.​ Add 
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see if 
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es 
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 User should 
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interactable 
electrodes t
hrough the 
interface 
 

Successf
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d all 
electrod
e on the 
scene 
through 
the 
interfac
e 

Pass 
 

3 Team  1.​ Open 

up the 

GUI 

Pulse 
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and ID 
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User should 
be able to 
assign 
functionality 
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assigned 
function

Pass 
 



 

2.​ Open 

the 
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wr page 
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5.​ Click to 
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de 
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the 

ChipVie
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the 
trigger 
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d to the 
specifie
d value 
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wavelen
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5.​ Verify 
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result 
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microso

pe view 

in the 

GUI  

 
5 Team  1.​ Open 

up the 

GUI 

2.​ Start 

storting 
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time 

betwee
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tive 

sorting 

cycles 

4.​ Calculat

e the 

total 

output 

in 1 

seconds 

 Droplet 
Actuation > 
1000 
 

400  Fail 
*The 
test 
failed 
due to 
the 
spectro
meter 
not able 
to spit 
out raw 
data less 
than 
2.5milli 
seconds. 
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a script 

that 
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random 

 Droplet 
Actuation > 
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value in 
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millisec
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to the 
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2.​ Run the 
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in 1 
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7 Team  1.​ Open 

up the 

GUI 

2.​ Start 

storting 

 

 Sort Purity 
>95% 

99.98% Pass 

8 Team  3.​      

 



 

4.​ ELSEE ASPECTS 

The objective of this capstone project is to improve the speed of sample preparation for 

microfluidic applications such as encapsulating cells in water droplets and sorting the 

droplets according to their content. We aim at allowing researchers to only sort droplet that 

contains some material of interest, such as droplets containing the desired cells that will be 

analyzed or genetically modified, at a faster rate making this automated process much less 

time consuming hence increasing the productivity and efficiency of many different lab 

processes, that today could take from days to months to complete on very large costly 

analysis machines. This makes the science community one of the main stakeholders of this 

project on a broad term. On the scale of our project, the principal stakeholders would be all 

the university’s laboratories, including our supervisor’s 

Being able to select cell groups by sorting droplets on a microscopic scale at very high 

speeds will permit Dr. Steve Shih’s lab to advance their research by reducing their scale of 

operation to a microfluidic system and the time required to finish research. Previous 

implemented solutions had performances 1000 times less than the system we designed, this 

shows how important and advanced the system we produced is and how much it would help 

advance the lab’s work throughput. 

As of now the ethics scope of our project is extremely limited inside laboratory settings but 

thinking ahead and imagining what these microfluidic technologies could become, we can 

identify benefits on diverse levels but also ethics concerns once these systems become 

commercially and publicly available. These benefits and concerns are not specific to a 

microfluidic sorter but are broader and touch on the advances bioengineering is rapidly 

making. 

If our product gets used publicly then many stakeholders would emerge. For instance, if our 

product was used as part of a drug or therapeutic development, then our product would 

increase the speed of the process and increase efficiency in terms of material used, hence 

reducing the overall cost, and allowing the development of new drugs faster. This brings to 

light the social and economic aspects of our product as it would increase the quality of life 

for the public and increase profits for pharmaceuticals and research institutions. In addition, 

research companies and DNA analysis institutions such as 23andMe and others, would be 

allowed to prepare and analyze DNA samples on a much faster rate, allowing those 

institutions to recognize disease-prone genes faster and allowing potentially ill people to act 

quickly by either taking preventative measures or take therapeutics before the diseases can 

develop and spread in their body. On the other hand, allowing commercial institutions such 

as 23andMe, Ancestry and others to analyze the genes of people faster means that those 

institutions would be able to increase their database at a faster pace than governmental 

policies. This brings to question the ethical use of the database and the potential privacy 

breach of the people as those companies can act in ways that do not protect their clients’ 

interests by selling their medical information to third parties like insurance companies which 

in return would discriminate their prices by charging higher fees to people with potential 

illness.  



 

Our microfluidic droplet sorter can be mostly implemented in the biomedical field such as in 

the development of synthetic biotics and therapeutics which highlights the process of 

directed evolution. If the process were not handled properly, drug-resistant bacteria would 

appear causing environmental and medical issues. 

For our prototype, there is not much we can do, whether in functionality or design 

architecture, to make the product more ELSEE compliant. But there exist some alternative 

options, such as communicating with governmental representatives to bring to their 

attention the possible unethical and malicious use by institutions with fast DNA and RNA 

sampling, analyzing, and editing. This would help enact policies that put strict and clear 

policies around them such as prohibiting the sale of medical data without the informed 

consent of the public, like in the European Union where the EU Data Protection Directive 

states that “the person from whom data is obtained should be informed of what will be 

done with this information and to whom it will be disclosed, Individuals can consent, 

withdraw or correct the data”[7]. In addition, campaigns can be made to the public by media 

outlets or social media to raise their awareness of the privacy concerns and the potential 

unethical use of their medical information, and to shed bright light on any medical privacy 

breach incident. Privacy breaches can also occur by unauthorized personnel such as hackers 

and one way to protect the public is by anonymizing or de-identifying the data so that 

neither hackers can blackmail individuals nor allowing insurance companies to discriminate 

their prices between their clients. 
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HIGH-THROUGHPUT 

DROPLET-BASED 

MICROFLUIDIC SORTER 

USER MANUAL 
 

GUI Startup 

Upon startup the interface will look as shown below: 

 

Figure 34 Main Interface 

The left pane shows three buttons use for switching between the three pages; Configuration 

Page, View Page, and ChipViewer Page. The configuration page is displayed upon startup. 



 

 

Figure 35 Left Pane 

Camera Startup 

The microscope camera can be activated by clicking the microscope icon button on the top 

right of the window: 

 

When successfully loaded, it will display as shown below: 

 

Figure 36  Full GUI 



 

 

Figure  Microscopic view of feeder, sorting and waste channels, along with the electrodes 

Loading a Configuration 

 

Configurations can be loaded by clicking the ‘box and gear’ icon.  Clicking this button will 

open the file explorer where a configuration file can be loaded for quickly setting the 

previous parameters. 

 

Saving a Configuration 

  

Parameters set on the interface can be saved as a configuration YAML file by clicking the 

save icon. Clicking this button will open the file explorer to specify the file destination. 

Setting the Default Configuration 

 

Whenever the application is started, there is a default configuration file that will be loaded. 

These initial parameters can be updated by clicking this button. 

Configuration Page 



 

 

Figure  Configuration UI 

The configuration page is sectioned off by five separate panels: 

​ Microcontroller Configuration: 

The dropdown button shows the list of controller devices to connect by 

selecting it and then clicking the ‘Connect’ button.  

‘Send Param’ button sends the parameters written in the ‘Droplet and 

Electrode Configuration’ panel to the connected controller. 

​ NEMESYS Pump Configuration: 

By default, this panel is disabled. To enable, click the ‘Advanced Setting’ 

checkbox. The pumps must first be connected by clicking ‘Connect’ within the 

same panel. The syringe’s swept volume can be set using the ‘Syringe 

Diameter’ and ‘Syringe Stroke’ fields. Once set, the ‘Calibrate’ button must be 

clicked to update the setting. 

​ Flame Spectrometer Configuration: 

Various parameters of the Flame Spectrometer can be controlled on this 

panel such as the turning ON/OFF the strobe lamp and the Continuous Mode 

as well. The period of the pulses can also be set in the ‘Period’ text field with 

units of seconds or milliseconds using the dropdown button. 

‘Integration Time’ sets the intensity of luminescence for detection. Droplets 

with higher fluorescence do not require as much integration time over one 



 

with lower fluorescence. Can be set in units of seconds or milliseconds using 

the dropdown button. 

Control over the data acquisition can be set by the ‘Trigger Mode’ dropdown. 

By default, it is set to ‘NORMAL’. 

​ Droplet and Electrode Configuration: 

‘Droplet Travel Time’ is defined as the time the droplets takes from the 

moment of spectrometer detection till reaching the sorting electrodes. Can 

be set in seconds or milliseconds. 

‘Pulse Time’ is used to set how long the sorting electrode will remain active 

(in HIGH voltage). Pulse time is proportional to the voltage level. Can be set in 

seconds or milliseconds. 

‘Number of Droplet’ is used to indicate to the microcontroller, the number of 

droplets begin generated so that it allows for limiting the number of 

electrode actuations in that timeframe. 

‘Sorting Electrode’ is used for setting which corresponding electrode will be 

used for sorting the droplets 

​ Camera Configuration:  

​ ​ This panel allows for adjusting the ‘Exposure Time’ in milliseconds.  

The camera viewer window size is set by the ‘Width’ and ‘Height’ parameters 

in pixels. 

Spectrometer View Page 

Accessed by clicking ‘View’ on the left pane. The spectrometer must first be selected using 

the ‘Select Spectrometer’ dropdown menu. The pump control is still accessible in this page 



 

 

Figure  Spectrometer View UI 

​ Detection Range Configuration: 

The wavelength and intensity are set with a minimum and maximum for the 

range of detection of the droplets. 

Clicking the ‘Play’ icon will start the sorting and the spectrometer graph view can be viewed 

as droplets are being detected.​  

 

Figure 40 Sorting Control 

Chip Viewer Page 

Accessed by clicking ‘Chip Viewer’ on the left pane. The electrodes are dragged and dropped 

on the gray background. The ‘Clear All’ button removes all present electrodes shown on the 

UI. ‘Load’ allows saved electrode configurations to be loaded on the UI. ‘Save As’ is for 

saving the current list of electrodes displayed as a YAML file. 



 

 

Figure 41 Chip Viewer UI 
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