Where to go with CDI

By Tomas Langer and Graeme Rocher

This document summarizes problems we see with current CDI specification and outlines options
for the future version of the specification.

Definition of the problem
Classpath Scanning
Usage of Reflection
Usage of Proxies
Extensibility
Runtime bytecode Generation
Usage of Deprecated/Unsupported JDK features
Base specification for other specification

The Proposal
The Goal
Backward compatibility
Why not portable extensions?
Portability
Bootstrapping
Bean landscape
Bean Metadata
Extensibility
Optional Scanning
Reduction of Scope
Other updates
Executable methods
Bean defining annotations

© 00N NO OO O o A B B W WOWDNDN-=

_— A
N ©O O ©

Why do this in CDI?

-
w

Definition of the problem

CDI has served us well in Java & Jakarta EE, yet the innovations in Java space have shown us
a few areas where CDI is lacking.

The following sections describe limitations of CDI and explanation of impact. Most of the
problems are caused by the specification itself, as these are required. Some of the problems are

specific to implementations (though sometimes this may be the only way to implement the spec
as is).

Used abbreviations/terms:

AOT: Ahead of time compilation into native executable (such as when using GraalVM native
image)

Build time injection: Analyzing the code at build time (using source code or byte code) to
generate metainformation and tools for runtime processing

Spec: short for “Specification”, see
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.pdf

Classpath Scanning

CDI uses runtime classpath scanning to discover bean archives (and beans).
Why:

1. The spec defines the concept of a bean archive, that is marked by a presence of
META-INF/beans.xml file and its bean-discovery-mode (Spec: 12.1. Bean archives), the
spec also explicitly mentions war, EJB, jar, or rar bean archives

2. The spec defines that types must be discovered in type discovery step from bean
archives (Spec 12.4.1. Type discovery); type discovery is mandatory part of application
initialization lifecycle

This has the following impact:

1. Performance: scanning jar files on file system (or even within an .ear file) can take a lot
of time and CPU resources

2. Classpath assumptions: all classpath is assumed to be URI based (and implementations
usually restrict this to be file base) - this approach may be insufficient for unusual
classloaders (as we see problems with separated classpath for classes and resources),
and for AOT (where classpath is structured differently and not based on external
resources at all)

3. We need to have a runtime dependency on a tool capable of scanning bytecode of
classes (unless we want to just load every single class on classpath) to determine
annotations

Usage of Reflection

CDI uses runtime reflection to analyze classes, methods and fields; and to inject values into
them.
Why:

1. The spec requires an AnnotatedType is created for each discovered type. As annotated
type contains information that can only be obtained at runtime through reflection, it
implies usage of reflection (Spec 12.4.1. Type discovery).

2. Portable extensions (Spec 11. Portable extensions) imply usage of reflection, as they
allow the developer to:

https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.pdf

Add beans, interceptors and decorators
Inject dependencies

Provide custom scope

Update metadata of annotated types

Qo oo

This has the following impact:

hwnh =

Performance: handling reflection requires more CPU and memory than direct access
AQT: reflection points need to be configured explicitly and can be easily missed

Larger stack traces that are more difficult for the JIT to inline than direct calls

Security: It is less safe to allow arbitrary reflective access on user supplied classes than
it is to only a limited subset of code declared in the source code to be accessed
reflectively. There have been many security vulnerabilities in reflective libraries that could
be mitigated by abandoning the use of reflection and ensuring only classes instrumented
at build time can be accessed.

Usage of Proxies

CDI uses runtime proxies to support injection into different scopes and to support AOT (such as
in interceptors).

Why:

1.

2.

Portable extensions can add interceptors and beans at runtime, implying runtime
generation of proxies

CDI prescribes usage of proxies (Spec 5.4. Client proxies), to allow injection of beans
with different scope (such as RequestScoped beans into ApplicationScoped bean); there
is no definition when such a proxy is generated

This has the following impact:

1.

2.
3.

Performance: handling of proxies is usually fully reflection based - see above “Usage of
Reflection)

AOT: proxies must configured explicitly to be supported

Proxies for interfaces can use the JDK proxy features, but for classes often require the
use of runtime bytecode generation using libraries like CGLib or Bytebuddy

Extensibility

CDI extensions allow full runtime modification to beans - adding annotations, or even creating
brand new synthetic beans at CDI container initialization time.

This has the following impact:

1. Performance: all of the information needs to be processed at runtime and all bean
definition infrastructure must be present at runtime including the ability to generate
proxies (potentially via runtime bytecode generation)

2. Difficult / Impossible to support AOT as bean registration and definition has to be done at
runtime

See also https://github.com/eclipse-ee4j/cdi/pull/451 from Red Hat which tries to address this
design concern in CDI extensions as they are today (although with a clear Quarkus focus).

Runtime bytecode Generation

CDI implementations usually generate code at runtime. This is usually related to the
requirement to proxy (see Usage of Proxies) and to generate synthetic beans at runtime.
This is a requirement for beans introduced by portable extensions.

This has the following impact:

1. Performance: classes need to be generated at runtime, slowing down startup, also
increasing memory usage in most cases

2. Security: generating new classes must follow rules for module system, making it
complicated and error prone

3. AOT: this is unsupported as the code is not compiled into native code at all

Usage of Deprecated/Unsupported JDK features

CDI implementations often fall back to the use of Unsafe, to be able to implement some of the
features in CDI (such as injection into final fields). This is not prescribed by the spec, but itis a
usual approach taken by implementations.

Why:
1. The specification allows injection into private fields
2. The specification allows usage of private methods as producers (Spec 3.2. Producer
methods)
3. The specification allows usage of private fields as producers (Spec 3.3. Producer fields)
4. The specification allows usage of private constructors to instantiate a bean (Spec 3.5.
Bean constructors)

This has the following impact:
1. Compatibility: implementations need to be updated to latest JDK versions, sometimes

generating warnings because of unsupported features used
2. AOQOT: this may be supported, though requires detailed understanding of the use cases

https://github.com/eclipse-ee4j/cdi/pull/451

Base specification for other specification

There seems to be an agreement in the Jakarta EE community, that CDI should be a base
specification for other specifications, such as for JAX-RS (similar features would be needed by
other features, if we decided to have a GraphQL specification, gRPC specification etc.).
There are several areas that are not covered by the CDI specification, yet needed for
downstream, such as:
- Support for the concept of “executable methods” - methods that must be executed by the
framework on beans, that require parameter injection
- Support for the concept of injected parameters - CDI currently supports @Inject, yet
that is only useful for injection into constructors or instance creating methods
To avoid confusion where each downstream specification defines handling of such features on
its own, this should be covered in CDI and re-used.

The Proposal

The following describes the direction we think CDI should take. The code in examples is mostly
conceptual, and needs to be verified through a POC if the community agrees on the direction.

The Goal

To mitigate or eliminate the problems described above, we would need to:

e Modify the specification making the usage of reflection optional and extending the API to
allow reflection-free access to Bean metadata.

e Create a new build time extension model that allows mutating and synthesizing new
beans at build time.

e Eliminate all aspects of the specification that require runtime classpath scanning
including the requirement for beans.xml.

e Modify the specification to make the runtime portable extension model optional, allowing
bean infrastructure to be mutable at build time but immutable at runtime.

e Modify the specification by reducing the scope of CDI and eliminating features that are
considered out of scope (ConversionScope, Passivation etc.) for such a build time
approach.

e Update the specification to serve as a stable base for other specifications

Backward compatibility

Given the existing design issues with CDI make CDI inappropriate for low-memory footprint and
performance sensitive scenarios (AOT, Serverless, Low-memory footprint Microservices, CLI
applications that require fast startup, Mobile applications, 0T Devices and so on) this proposal
suggests creating a new profile for CDI (tentatively named “CDI lite”) that adapts the CDI

programming model to these scenarios by reducing the scope of the CDI specification and
providing the needed extensibility (as described above)

Backward compatibility goal:

- The build-time extension model should provide API that would allow this model to be
processed by runtime, allowing a CDI portable extension that could be a bridge between
the build time extensions and portable extensions

- If such an option would not be feasible, Build-time extensions should not be required by
CDI EE

Envisioned profiles in CDI:
1. “CDI Lite” - limited scope (no passivation support, runtime reflection support optional
etc.), build-time extensions
2. SE - as is + support for build-time extensions
3. EE - as is + support for build-time extensions if feasible

Why not portable extensions?

The first question we asked ourselves was if this could be achieved with the current portable
extension model.

Unfortunately it seems that this is not feasible.

The following sections describe the reasons.

Portability

One of the main reasons is the requirement for portability. This is one of the main overall
features of Jakarta EE specification - the same application binary should be runnable on
different application servers (or different SE runtimes).

As the build-time approach generates classes and resources, the runtime must be able to
process such. As a result, the specification needs to define these resources and metadata, so
an application compiled with one implementation can be executed by another.

Bootstrapping

The bootstrap process of CDI is defined by the events that are happening, such as
“BeforeBeanDiscovery”. The specification implies that all of this is happening at runtime.
There is no place in the specification that would allow us to assume which part is “safe” to be
done at build time, and which parts need to be executed at runtime - the bootstrap cannot be
“split” into a build time part and runtime part, as portable extensions can keep state (such as
threads, open sockets, file descriptors) that cannot be kept between build and run time.

Even if one vendor defined an approach to this (as Helidon has done for portable extensions,
even though silently for AoT, and Quarkus has done with their extensions), there is no way to
provide portability, unless CDI specifies the requirements.

Bean landscape

CDI expect the overall bean structure to be constructed at runtime. If | were to create a portable
extension that is fully build time compatible, application may have an additional extension that is
runtime only, that adds features to beans we did not anticipate (such as a new interceptor). If
this would happen, the whole build-time processing would become useless, and we would need
to rescan all the beans and create proxies at runtime, defeating the purpose of build time
processing

Bean Metadata

Currently the metadata model is not complete and heavily depends on java.lang.reflect
classes such as direct usage of java.lang.reflect.Method and
java.lang.reflect.Field. The AnnotatedMember interface directly exposes reflective
access via the getJavaMember () method.

To be able to fully support build time processing, we would need to fully abstract the model of
- Classes
- Methods
- Fields
- Annotations

We need to analyze whether we could update the existing metamodel, or we would be required
to create a new package with a new model.

The meta model needs to provide information about each element (Class, Method, Field,
Parameter, return type) in a reflection free way.

The model would need to provide information about annotations on an element that is
decoupled from the use of reflection and JDK proxies and include computed annotation
metadata defined as per the stereotype rules of the current CDI specification.

Such an abstraction should be compatible with build time generation through either bytecode
processing or annotation processors.

Implementations of CDI lite should make this meta model available at runtime through the
existing interfaces defined in jakarta.enterprise.inject.spi.

The runtime model should by default be immutable, unless an explicit dependency is defined by
the user to add support for runtime portable extensions in which case additional features are
added to the container environment to support the creation and definition of beans at runtime.

https://jakarta.ee/specifications/cdi/3.0/apidocs/jakarta/enterprise/inject/spi/AnnotatedMember.html#getJavaMember--

Extensibility

The current extension mechanism of CDI fully relies on runtime information and the capability to
modify beans at bootstrap time. This requires the runtime implementation of CDI to include
significant complexity in order to deal with the creation of runtime proxies, generate byte code
and process reflective data and so on.

The CDI lite profile makes the existing runtime extension model optional for implementers, but
adds the possibility to add extensions that are processed at build time.

An implementation can, optionally, provide an additional module that can be added to the
classpath in order to enable support for runtime portable extensions, but this is not a

requirement of the CDlI lite specification.

Extensions in CDI lite are expected to be discovered by ServiceLoader and implement a new
interface (such as jakarta.enterprise.inject.extension.Extension).

The following example shows a possible shape of this interface:

Extension {

discover (DiscoveryContext context) {}

enhance (EnhancementContext context) {}

synthesize (SynthesisContext context) ({}

validate (ValidationContext context) {}

Each method represents a phase the order of which is defined by the method order above. A
phase receives a context object which allows for future extensibility and is defined as a default
interface method allowing users to optionally implement each phase.

The DiscoveryContext could be defined as follows:

DiscoveryContext {
AppArchiveBuilder classes ()

Contexts contexts ()

And provides the ability to register additional Context objects and classes that can be found by
class queries.

The EnhancementContext could be defined as follows:

EnhancementContext {

AppArchiveConfig archiveConfig ()

Messages messages ()

The enhancement phase will allow developers to register annotation mutations such as adding
or removing annotations on types.

The SynthesisContext could be defined as follows:

SynthesisContext
AppArchive archive ()
AppDeployment deployment ()

SyntheticComponents components ()

Messages messages ()

Adds allow registration of synthetic beans.

Optional Scanning

Since CDI lite extensions are processed at build time the requirement to define beans . xm1
becomes optional for CDI lite implementations. The build time implementation can instead
implement build time generated logic that eliminates completely the need for classpath scanning
or XML-based bean discovery configuration.

Reduction of Scope

In addition to the above mentioned modification to the spec for the CDI lite profile some aspects
of the current definition of CDI are considered out of scope and not supported by CDI lite
because they either no longer make sense in the context of the profile or require a revision of
another specification:

e Passivation -
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#passivating_scope
e Conversations -
https://jakarta. i/3.0/jakarta-cdi .0.html

https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#passivating_scope
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#conversation_context

e ConversionScope -
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#conversation

e Expression Language (EL) -
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#name_resolution ee

e Runtime Portable Extensions -
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#spi

Other updates

There are some areas where we either need to use implementation specific features, or where
each depending specification may come up with a custom approach. The following sections
describe some of these that could be unified.

Executable methods

Currently CDI does not have a concept of a bean method that can be executed from another
bean with parameter binding.

Such a concept is used in other specs, such as JAX-RS, where resource methods are executed
at runtime with the need to bind their parameters, and provide the support for interceptors and
other CDI features.

The CDI spec should add API for such a feature, so other specs do not need to define a custom
solution.

The following should be possible:

1. Obtain a reference to executable method with all metadata, including annotations on
method and on fields

2. Execute an executable method on a bean instance

3. Obtain executable method metadata in interceptors (to analyze annotations using
reflection-less approach)

4. Create a parameter binder, that would support a specific annotation on a parameter
(basically a parameter qualifier)

Pseudocode:

Let’s consider the following bean:

)

Resource {

String helloWorld(@HeaderParam() String header) {
}

https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#conversation
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#name_resolution_ee
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#spi

The annotation definition:

(ElementType.PARAMETER)
HeaderParam {

String value();

Now we could create a parameter binder:

(HeaderParam.class)
HeaderParamBinder ParamBinder {

HttpHeaders headers;
Converter converter;

HeaderParamBinder (HttpHeaders headers, Converter converter) {
.headers = headers;
.converter = converter;

<T> T bind(HeaderParam annotation, GenericType<T> type) {
converter.convert(headers.getRequestHeader (annotation.value()),

type);
}

And the execution of this method would be something like:

(Path.class)
JaxRsExecutor ExecMethodHandler<Object, Object> {
ParameterBinder binder;

Container container;

JaxRsExecutor(ArgumentBinder binder) {
.binder = binder;

}

processMethod (ExecutableMethod<Object, Object> method) {

executeMethod(ExecutableMethod<Object, Object> method) {

Object beanInstance = container.select(method.getDeclaringType()).get();
method.invoke(beanInstance, binder.bind(method));

Bean defining annotations

Currently CDI specifies the annotations that must create a bean (such as @ApplicationScoped).
This is limiting the extensibility of CDI, as we need to use implementation specific ways to add
bean defining annotations for beans not annotated with “@Stereotype”.

It would be beneficial to add a specification way to add beans as bean defining annotations for

such cases.

There is currently a method on "BeforeBeanDiscovery' that allows to add a stereotype, though it
is not honored at runtime (as we may use some compile time index, such as Jandex).

Similar concept should exist for build-time processing, that would allow us to define a new
stereotyped annotation to be honored by runtime processing.

Conceptual code:

PathBda implements TypedAnnotationMapper<Path> {
public List<AnnotationValue<?>> map(AnnotationValue<Path> annotation..)

return List.of(AnnotationValue.builder(Path.class)

.addStereotype(Stereotype.class)
.addAnnotation(ApplicationScoped.class)
.build());

Why do this in CDI?

When we discussed these topics, there were voices to move this outside of the CDI spec.

Here are a few reasons why we should make this part of CDI:

1.

2.

A new spec would mean a new set of downstream specifications - such as JAX-RS. If
JAX-RS is CDI based, we would need to come up with JAX-RS Lite based on CDI Lite
A new spec would create fragmentation of the Java enterprise space. Currently there are
two main forces in this space - Jakarta EE and Spring. Spring also uses/supports a set
of Jakarta EE specifications. | think it is in the best interest of the community and
Vendors to keep the number of competing specifications/approaches low

A certain amount of modernization will make CDI interesting even for modern
microservices frameworks that focus on speed and footprint

The whole Eclipse MicroProfile would benefit from this, as if we split implementation, MP
would need to decide which path to take. If it would take path of incompatible CDI Lite,
all vendors that base their implementation on existing Jakarta EE application servers
would not be able to implement this at all; if it would take path of CDI, vendors would not
be able to benefit from the features of CDI Lite

	Where to go with CDI
	Definition of the problem
	Classpath Scanning
	Usage of Reflection
	Usage of Proxies
	Extensibility
	Runtime bytecode Generation
	Usage of Deprecated/Unsupported JDK features
	Base specification for other specification

	The Proposal
	The Goal
	Backward compatibility
	Why not portable extensions?
	Portability
	Bootstrapping
	Bean landscape

	Bean Metadata
	Extensibility
	Optional Scanning
	Reduction of Scope
	Other updates
	Executable methods
	Bean defining annotations

	Why do this in CDI?

