•1

تمرين ①

يلي: نعتبر الدالة g المعرفة على المجال R بما يلي: $g(x)=1+4xe^{2x}$

R من $g'(x) = 4(2x + 1)e^{2x}$.1 من $g'(x) = 4(2x + 1)e^{2x}$.1

بين أن الدالة g تزايدية على $]\infty$, $+\infty$ وتناقصية على المجال g . $]-\infty$, $-\frac{1}{2}$

 $g\left(-\frac{1}{2}\right)>0$ من تحقق $g\left(-\frac{1}{2}\right)=1-\frac{2}{e}$ بين أن $g\left(-\frac{1}{2}\right)=1$ عن من تحقق $g\left(-\frac{1}{2}\right)=1$. $g\left(x\right)>0$ من $g\left(x\right)>0$ من ثم استنتج أن

ر. لتكن الدالة العددية f المعرفة على R بما يلي: $f(x) = x + 1 + (2x - 1)e^{2x}$ المنحنى الممثل للدالة f في معلم متعامد ممنظم $(0,\vec{i},\vec{j})$ ($(0,\vec{i},\vec{j})$ $(0,\vec{i},\vec{j})$. $(||\vec{i}|| = ||\vec{j}|| = 2cm$

 $\cdot (ue^u = 0)$ نذک $f(x) = -\infty$ نز بین أن میر f(x) الحسب.

f بين أن: g(x)=g(x) لكل f من R من R ثم استنتج أن الدالة R تزايدية قطعا على R.

3. أحسب $\frac{f(x)}{x}$ و استنتج أن (C) يقبل فرعا شلجميا في اتجاه محور الاراتيب.

4. احسب [f(x) - (x+1)] و استنتج أن المستقيم (Δ) الذي معادلته y=x+1 مقارب للمنحني (Δ) بجوار Δ

5. حدد زوج احداثيتي نقطة تقاطع المستقيم (Δ) و المنحنى (C) ثم بين أن المنحنى (C) يوجد تحت المستقيم (Δ) على المجال .] $-\infty$, $\frac{1}{2}$ [$-\infty$, $\frac{1}{2}$ [

6. بين أن: y = x هي معادلة للمستقيم (T) مماس للمنحنى (C) في النقطة (C).

7. بين أن للمنحنى (C) نقطة انعطاف افصولها $\frac{1}{2}$ – (تحديد ارتوب نقطة الانعطاف غير مطلوب).

8. بين أن المعادلة f(x)=1 تقبل حلا وحيدا α في R وأن $0 \leq \alpha \leq 1$.

 (O, \vec{i}, \vec{j}) الشئ المستقيمين (Δ) و (T) و المنحنى (D) في المعلم (D

يلي: معتبر الدالة g المعرفة على المجال $[0,+\infty[$ بما يلي: $g(x)=(x-1)e^x+x+1$

g الدالة g'(x) من g'(x) من الدالة g'(x) من الدالة g'(x) تزايدية قطعًا على g'(x) من g'(x)

ين أن
$$g(x) \ge 0$$
 لكل x من $g(x) \ge 0$ (لاحظ أن: $g(x) \ge 0$ بين أن $g(x) \ge 0$ بين أن $g(x) = 0$

نعتبر الدالة العددية
$$f$$
 المعرفة على R^* بما يلي: III نعتبر الدالة العددية f المعرفة على $f(x) = \frac{xe^x}{(e^x-1)^2}$ معلم متعامد ممنظم $f(x) = \frac{xe^x}{(e^x-1)^2}$ معلم متعامد ممنظم $f(x) = \frac{xe^x}{(e^x-1)^2}$

ر. بين أن f دالة فردية.

رنكر أن:
$$(x)$$
 أول مبيانيا هذه النتيجة. $(\frac{e^x-1}{x} = 1)$ أول مبيانيا هذه النتيجة.

$$.[0,+\infty[$$
 کی $f^{'}()=-\frac{x}{\left(e^{x}-1\right)^{3}}g(x)$ نین أن: .4

. اعط جدول تغيرات الدالة
$$f$$
 على المجال $]\infty+\infty$.

انشى (*C*).

يلي
$$R$$
 للتكن g الدالة العددية المعرفة على $g(x)=e^{-x}+x-1$

$$g$$
م ضع جدول تغيرات الدالّه $\forall x \in R$, $g'(x)$ احسب .1

.
$$(\forall x \in R)$$
, $e^{-x} + x \ge 1$: آنًا .2

$$f(x)=rac{x}{e^{-x}+x}$$
: لتكن f الدالة العددية المعرّفة بما يلي $f(x)=rac{x}{e^{-x}+x}$ و $f(x)=rac{x}{e^{-x}+x}$ منحناها في معلم متعامد ممنظم $f(x)=rac{x}{e^{-x}+x}$

.1 حدد
$$D_f$$
 مكنك استعمال نتيجة السؤال الثاني بالجزء الأول).

$$R$$
 من R کی $f(x) = \frac{1}{1 + \frac{1}{1 + \frac{1}{x}}}$.2

.. بین أن:
$$1=0$$
 و $f(x)=0$ ثمّ أوّل هندسیا هاتین النتیجتین.

به احسب
$$f'(x)$$
 غم ضع جدول تغیرات الدالة $\forall x \in R$, $f'(x)$

.5 حدد معادلة المماس ل
$$C_{_{f}}$$
 في النقطة O أصل المعلم.

استنتج الوضع کنة.
$$\forall x \in R, \ x-f(x)=\frac{xg(x)}{g(x)+1}$$
 استنتج الوضع النسبي ل C_f و المعادلة $y=x$

$$(\frac{1}{1-e}\approx 0.6:$$
 أنشيء C_f و (Δ) و (Δ) و (C_f

المعرفة بما يلي: نعتبر المتتالية العددية
$$u_n \atop n \geq 0$$

$$\{u_0 = 1 \qquad u_{n+1} = f(u_n)$$

$$. \forall n \in \mathbb{N}, \quad 0 \le u_n \le 1 :$$
1. بيّن بالترجّع أن $1 : 1$

بين أنّ المتتالية
$$(u_n)$$
 تناقصية.

استنتج أنّ المتتالية
$$(u_n)$$
 متقاربة. ثمّ حدّد نهايتها.

نعتبر الدالة العددي المعرفة على $f(x) = x + \frac{e^x - 1}{e^x + 1}$ ليكن يعتبر الدالة العددي المعرفة على $f(x) = x + \frac{e^x - 1}{e^x + 1}$

 $(0,\vec{i},\vec{j})$ المنحنى الممثل للدالة f في معلم متعامد ممنظم (C)

0 بين أن R من R من R و استنتج أن النقطة ما f(-x)=-f(x) مركز تماثل للمنحنى ().

) R من R م

.3 بین أن R من R من R من R من R من أن: $\frac{2e^x}{\left(e^x+1\right)^2}$.3 $f'(0)=\frac{3}{2}$

R بين أن الدالة f تزايدية على A

بين أن $y=\frac{3}{2}x$ هي معادلة ديكارتية للمستقيم (T) مماس للمنحنى .6 في النقطة D.

 $f(x) = + \infty$ نین أن ه.6

ر. أحسب [f(x)-(x+1)] واستنتج أن المستقيم (D) الذي y=x+1 معادلته y=x+1 معادلته

(D) بين أن المنحنى (C) يوجد تحت المستقيم .8

9. أنشئ المستقيمين (D) و (T) و المنحنى (C) (نذكر أن (C) هو مركز (C) ماثل المنحنى (C)).

R على $h: x \mapsto \frac{1}{x+1}$ على $h: x \mapsto \frac{1}{x+1}$ على $h: x \mapsto \frac{1}{x+1}$ على المناف

:عتبر f الدالة العددية للمتغير الحقيقى x بحيث:

و (C) يرمز للمنحنى الممثل $f(x)=2ln(e^x-2\sqrt{e^x}+2)$ للدالة f في معلم متعامد ممنظم fمنظم ($0,\vec{i},\vec{j}$).

1. تحقق من أن:

x لكل $e^x-2\sqrt{e^x}+2=\left(\sqrt{e^x}-1\right)^2+1$ كال x من x

2. أحسب (x) ثم بين أن (x) = ln4 و أول هذه النتيجة هندسيا.

> 5. تحقق من أن: (2 + 2 -

 $(\forall x \in R) f(x) = 2x + 2ln(1 - \frac{2}{\sqrt{e^x}} + \frac{2}{e^x})$

يين أن المستقيم (D) الذي معادلته y=2x مقارب للمنحنى y=2x .+ (

7. أ) تحقق أن:

x کی $e^{x} - 3\sqrt{e^{x}} + 2 = (\sqrt{e^{x}} - 1)(\sqrt{e^{x}} - 2)$ من R

ب) أدرس إشارة كل من $\sqrt{e^x}-2$ و

$$R$$
 که $(\sqrt{e^x}-1)(\sqrt{e^x}-2)$

ج) استنتج أن x من المجال $e^x-2\sqrt{e^x}+2$ كل x من المجال (ج. $e^x-2\sqrt{e^x}+2$

.[0, ln4] لكل x منالجحال $f(x) \le x$ (8

8. أنشئ المنحنى (C) (نقبل أن للمنحنى (C) نقطتي انعطاف افصول إحداهما أصغر من 1-0 وأفصول الأخرى أكبر من 1-0 تحديدهما غير مطلوب ونأخذ $1,4 \approx 1$.

N من n من $0 \leq u_n \leq ln4$ بين أن: $u_n \leq ln4$ بين أن المتتالية u_n تناقصية ثم استنتج ان المتتالية u_n متقاربة و حدد

17 - (2.2-

نهايتها.

 $g(t)=e^t-t-1$ با IR با الدالة g المعرفة على g الدالة g على g الدالة g على g الكدية الصغرى للدالة g على g

و $e^t > t$ و $e^t > t + 1$ و $e^t > t$ و $e^t > t + 1$ و $e^t > t$ و $e^t > t + 1$ و $e^t > t$ و e

 $f(x) = x^2 - 2x - 2\ln(1 - xe^{-x}) : x = 3$ $\lim_{x \to \infty} f(x) = x^2 - 2x - 2\ln(1 - xe^{-x}) : x = 3$ $\lim_{x \to \infty} f(x) = x - 2$ $\lim_{x \to \infty} f(x) = x - 2$

 $\lim_{x \to +\infty} \mathbf{f}(x) \quad \text{im} \quad x e^{-x} = 0$ فَبِل أَن $x \to +\infty$

 $f'(x) = \frac{2(x-1)(e^x - x - 1)}{e^x - x}$: x خین آن من اجل کل عدد حقیقی x

($\lim_{x \to -\infty} f(x) = +\infty$ نقبل f نقبل f انقبل جدول تغیرات الدالة f

و متعامد و متجانس نعتبر القطع المكافئ (p) نو المعادلة $y = x^2 - 2x$ و (C) منحنى الدالة $\lim_{x \to +\infty} f(x) - (x^2 - 2x) = 0$ و (D) و (E) منحنى الدالة $x \to +\infty$

(p) و (C) و ادرس الوضعية النسبية لـ 9

 (D_2) على الترتيب عند النقطة ذات الفاصلة (D_2) مماسي المنحنيين (D_2) و (D_1) على الترتيب عند النقطة ذات الفاصلة (D_2)

11 _ أرسم كل من (C) و (p) في نفس المعلم .

 $g(x)=e^{x}-x-1$ يلي: R الدالة العددية المعرفة على R بما يلي:

. IR هم حدد إشارتها على g أدرس تغيرات الدالة

 $e^x \ \mathbb{X} \ x$ و $e^x \ge x + 1$ استنتنج أنه من أجل كل عدد حقيقي $e^x \ge x + 1$ الدينا:

 $f(x) = x^2 - 2\ln(e^x - x)$ التكن f دالة المعرفة ب:

f بمجموعة تعريف الدالة D_f حدد

بين أن الدالة f دالة زوجية.

 $\lim_{x \to -\infty} f(x)$

 $f(x) = x^2 - 2x - 2\ln(1 - xe^{-x})$ بین أن: