
Data Bus Architecture DRAFT DRAFT DRAFT

Contents
Reviews and Revisions
Purpose

Goals
Audience
Related Documents

Section 1 - Overall Architecture
Diagram
Components

Encryption
Authentication
Authorization
Performance, Scaling and Caching
Logging and Remote Management

Section 2 - Internal Architecture of Adapters
Diagram
Components

Databases, Properties and Server Config
Data Access Implementations
Authorization Decorator
Authorization Implementation

Section 3 - Source Code and Maven Project Structure
Diagram
Components

Kuali Student
Student Baseline
Contributions
Databus Server Config
Databus Adapter
Bristol Databus Adapter
Middlesex Databus Adapter

Section 4 - Configuration By Colleges
Customizations, Configurations, and Contributions
Goals
Spring Bean Injection

Example ATP Service Injection
Example Middlesex Code overrides using Spring Beans

AtpServiceMiddlesexImpl.java
RolePermissionServiceMiddlesexImpl.java
AtpServiceAuthorizationServiceDecoratorMiddlesexImpl.java

Section 5 -- Internal Architecture of the Data Bus
Diagram

Page 1 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

Components
Federator
Delegates
Federation Logic
Rest API

Section 6 -- POC User Interface Wireframe
Section 7 -- College Adapter -- Recommended Configuration

Reviews and Revisions

Date Initials Reviewer Notes/Comments

5/17/2014 nw Norm Wright Initial Draft

5/19/2014 tb Tony Baratta Reviewed

5/20/2014 nw Norm Wright Response

7/30/2015 nw Norm Wright Added Section for Server Requirements

9/16/2015 nw Norm Wright Added related Documents section

Purpose

Goals

Even though the colleges have agreed to the general architecture of the Data Bus, a much more
detailed description of that proposed architecture is required ensure a full understanding and
agreement.

Evolving -- Although many aspects of the architecture are clear, we understand that many other
aspects of the architecture can and should evolve as we move forward. Our hope is that this
document will facilitate a dialog with the Data bus technical participants at the colleges and
career centers so that they may:

1.​ Understand the proposed architecture
2.​ More fully vet the proposed architecture
3.​ Articulate any concerns they may have with the proposal
4.​ Express any additional technical requirements
5.​ Make suggestions for improvements
6.​ Help decide what aspects we can and should do as part of the POC and what aspects

can be deferred

Page 2 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

Audience

This is a highly technical document that describes the architecture of the proposed Data Bus
from several perspectives:

●​ Overall
○​ how the adapters connect to the bus
○​ how consumers connect to the bus’s restful api

●​ Internal
○​ How the adapters are internally architected

●​ Development
○​ How the code is structured into projects

●​ Configuration
○​ how the adapter software is organized to facilitate local configuration and control

An understanding of certain architectural and technical topics is critical to reading this
document. Some such topics include::

●​ SSL, certificates and encryption
●​ Authentication, Basic Auth, CAS, Shibboleth
●​ Authorization -- roles and permissions
●​ Application Servers (tomcat)
●​ Databases (oracle)
●​ Source Code Control
●​ Maven
●​ Spring Injection
●​ CXF, Soap and REST
●​ Caching, logging

Related Documents

●​ How to Setup the Developer Environment For the Databus POC

Section 1 - Overall Architecture

This section describes the overall architecture, how the adapter connects to the bus and how
the bus works.

Page 3 of 20

https://docs.google.com/document/d/1Pum4FQfI1EpTmCxQZEh2h2bUgfswXaG2aaSUgZZu0D8/edit#

Data Bus Architecture DRAFT DRAFT DRAFT

Diagram

Components

Encryption

1.​ All connections to and from the bus should be encrypted via SSL
a.​ Should we do this for the POC?

i.​ If we are only exposing publicly available data then perhaps not?
2.​ All connections within the bus should also be encrypted via SSL

a.​ Initially we envision the REST API and Federator components to live in the same
WAR deployment (same JVM) so the communication will be internal but for
scalability we envision the REST API module could be deployed separately (see
performance below) and if that is done the connections should be via SSL

3.​ Are there certain data elements that we should consider encrypting the data as well?
a.​ Perhaps SSN?

i.​ Would need a VERY strong use case for even exposing this!
b.​ Other???

Page 4 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

Authentication

1.​ Rest API authentication to consumers
a.​ ANONYMOUS_GUEST access

i.​ Allow for in architecture but not implement in POC?
ii.​ Would only apply to certain public transactions

b.​ Different kinds of consuming applications:
i.​ Server based applications that authenticate the user themselves and

then:
1.​ Have server side code talking to the REST API on behalf of that

user
2.​ Serve up browser components that need to directly talk to the

REST API
ii.​ Browser only applications (like plugins) that need to authenticate

themselves to the REST API
c.​ Options

i.​ Suggest we use authentication keys like MIT’s MC3’s Handcar
ii.​ What about OAUTH?

1.​ OAUTH does not covers the browser only applications
iii.​ What are the limitations of securing server to server connections via IP

addresses? Only allow listed IPs or IP Subnets to connect? [AB]
1.​ I thought IP addresses could be easily spoofed (NW)
2.​ Spoofing only works one way, sending. You can’t route the reply

info back to yourself unless you “closed the system”, and if you
could do that you’d have physical access to the server and/or
router for that sub-net. At that point you have worse problems.
[AB]

iv.​ ???
2.​ Federator to adapter authentication

a.​ We could use specially issued certificates to ensure the adapter is really talking
to the expected federator and not spoofed into giving up data to unauthorized
people?

i.​ This is how MIT secures application to application, they call them App
Certs.

b.​ For POC can we just use Basic AUTH?
i.​ Or can SSL be implemented quickly on the Community College side?

(AB)
ii.​ Yea... I just “hate” installing certificates in Java (NW)
iii.​ also, I believe that we can use “server to server” certs too within Apache,

just need to verify that. Probably a module we can install that’s not default
in tomcat. Off load that security to the web service instead of in code.[AB]

3.​ Proxy authentication needs to be supported

Page 5 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

a.​ Consuming applications would need to authenticate the user and the services
would then manage a chain of trust that they actually did that effectively.

i.​ What kinds of policies/procedures should we put in place to ensure that.
1.​ I.e. we don’t want a consuming application to do a lousy job at

authentication so that it could be hacked.
b.​ Note: The services support two principals

i.​ The principal that is immediately connecting to and is authenticated to the
service

1.​ This needs to match the principal obtained from the web service
context

2.​ This principal needs to be explicitly authorized to be able to serve
as a proxy for the actual end user’s principal

ii.​ The ultimate principal on whose behalf the request is being made
1.​ This user must have been explicitly authorized to execute the

service method in question
c.​ For read only servers, could we just authenticate the server / proxy via the

Application Certificates? Will the Federator need to do more than read from the
Community DBs? (AB)

i.​ Eventually they will do more than read (NW)

Authorization

1.​ Needs to be enforced in the adapters so that:
a.​ It follows the rule that the enforcement point must be close to the resource being

guarded.
b.​ Each community college has control over those authorizations

2.​ Authorizations need to be very fine grained
a.​ Person A can do X to Y part of student B’s record for duration Q for example:

i.​ Student Maryellen (B) grants career counselor Mark (A) the right to to
view (X) my attendance record (Y) for the next 9 months (Q)

3.​ Authorizations need to have expirations
4.​ Services will provide the interface for managing authorizations

a.​ During the POC we should be able to just run a hard coded “mocked”
authorization as part of the deployed java code

i.​ This can be Spring injected to point to any service that implements the
same methods

Performance, Scaling and Caching

1.​ We do not expect to have to address performance directly in the POC but our goal of the
POC is to have an architecture that supports techniques that we know we can leverage
should we move past the POC stage

2.​ A caching adapter can be applied at any of the service interconnection points (See the
plus sign, “+” in the above diagram)

Page 6 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

a.​ On the college side of the college adapter to federator link to reduce the
impact/hits on the college’s database

b.​ On the federator side of the same connection to reduce the calls/hits across the
wire to the college adapter

c.​ On the federator side of the federator to REST API to reduce the calls/hist on the
federators

d.​ On the REST API side to to reduce calls/hist across the wire on the federators
3.​ Caching adapters need to be developed so they take into account the user who is

making the request.
a.​ This is to ensure a cache does not serve up data to an unauthorized person just

because that same data was put in the cache by an authorized person.
4.​ To enable scaling all of the major components should be able to:

a.​ Run independently on their own server
i.​ During the POC

1.​ The college adapters are expected to run on their own servers
2.​ The the federator and REST API will be run on the same server
3.​ TBD where the consuming application will live

b.​ Have multiple instances spun up and load balanced via something like an F5
i.​ As such all of the services are stateless and should support failover on a

call by call basis.
5.​ Propose to leverage Ehcache as the tool to implement the caching scheme

Logging and Remote Management

1.​ We do not expect to have to fully address logging and remote management directly in
the POC but a goal of the POC is to have an architecture that supports techniques that
we can leverage should we move past the POC stage.

a.​ Note: We now have instrumented the services for performance monitoring
2.​ A logging adapter can be applied at any of the same interconnection points as caching

adapters to collect statistics for management purposes
3.​ JMX could like wise be leveraged to provide this remote management of the bus.
4.​ Logging could also serve as a mechanism to track all requests for audit purposes.

a.​ Is this something we need to implement during the POC?
i.​ I think the “hooks” should be laid down for logging at minimum.(AB)

1.​ Perhaps a simple logging adapter...(NW)
2.​ With all the debugging one does to get the software running, the

logging could be laid down early for debugging purposes and
repurposed later for security logging.(AB)

b.​ For business events, such as “this person saw this student’s record” we will
leverage the logging service.

Page 7 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

Page 8 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

Section 2 - Internal Architecture of Adapters

This describes how the adapters are internally structured, showing how authorization is an
integral aspect to the adapter architecture giving the colleges complete control over what they
choose to share and not share.

Diagram

Components

Databases, Properties and Server Config

1.​ In the POC the databases are all Oracle databases running Ellucian’s Banner system.
a.​ Connections are secured via Oracle’s thin JDBC driver

2.​ Login usernames and passwords are managed via properties files that are located in a
secure location on the server machine

a.​ Typically there are different properties for each tier of deployment
i.​ DEV
ii.​ TEST

Page 9 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

iii.​ QA
iv.​ PROD

3.​ For the POC we are only expecting a single deployment to a TEST or QA tier.
4.​ The properties files will eventually also hold information about the locations on the server

of keystores and truststores for SSL encryption
5.​ The Server Config component allows colleges to override/specify exactly where these

properties are to be located
6.​ Question: The diagram above looks like multiple College DBs are controlled by the same

server config, which I don’t think is how you intended to display the info. Not sure what
would be a better diagram at this time, but I would recommend showing only one College
DB unless we can show that each College DB has it’s own configuration control. Maybe
multiple stacked images (e.g. several same shapes over laying one another offset by 2-5
pixels right and bottom.) for the Server Configs and Data Access Imps. Also maybe the
Server Configs and Data Access Impls need to be the same image or a hybrid. (AB)

a.​ Ahhh... no that just shows one college’s adapter but I can see how it could be
confusing... I added more clarification to the diagram....(NW)

​

Data Access Implementations

1.​ The data access implementations implement the relevant Service Contract.
a.​ See Kuali Student Contract Documents
b.​ for example:

i.​ Atp Service (academic time period) for Terms and Semesters supported
by the college

ii.​ Course Service for general information about all the courses that are
offered at the college

iii.​ Course Offering Service for courses and sections offered by the college
in a particular term

iv.​ Academic Record Service for information about a student’s enrollments,
registrations and grades and degrees

v.​ etc...
2.​ Each data access impl maps the college’s data to the standard service contract

definitions
3.​ Map impls (also called Mock impls) can be swapped in for testing

a.​ This is how the “Hello World” war works -- it does not connect to any database
but just serves up hardwired test data.

Authorization Decorator

1.​ The authorization decorator also implements the relevant Service Contract by “adding
(decorating it with) authorization functionality.”

2.​ Every service call must pass an authorization check before the underlying data access
implementation is invoked to fetch the data

Page 10 of 20

http://site.origin.kuali.org/student/2.0.0-services-SNAPSHOT/ks-api/ks-enroll-api/services/contractdocs/index.html

Data Bus Architecture DRAFT DRAFT DRAFT

a.​ Authorization controls can also be enforced on the way out to block or filter
certain records.

3.​ The authorization decorator is the policy enforcement point for the authorization
4.​ The authorization decorator calls the role permission implementation to ask if the person

who is making the call “isAuthorized” to make that call

Authorization Implementation

1.​ An authorization service implementation will be used by default that persists to a
database

2.​ A map (or Mock) implementation can be swapped in and used instead of the persistence
Implementation

a.​ This technique will be used during the POC to hardwire which users can and
cannot call which service method

3.​ Should this project move past the POC stage colleges have several options to allow for
more flexible management authorizations

a.​ Install authorization Services
b.​ Implement a more lightweight call to the college’s own role and permission

system, for example LDAP

Page 11 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

Section 3 - Source Code and Maven Project Structure

Diagram

Components

While we are NOT installing Kuali Student software per se we are leveraging pieces of the code
base, especially the service contracts for this project.

Kuali Student

1.​ Massive source tree holding all of the student specific service definitions,
implementations and screen user interfaces

2.​ See https://svn.kuali.org/repos/student/

Student Baseline

1.​ This is a copy of the Kuali Student source code.
2.​ See https://svn.kuali.org/repos/student/enrollment/aggregate/tags/student-2.0.0-M8/
3.​ This is to be used as a baseline for comparisons to the contributions branch should that

be needed.

Contributions

1.​ Location for us to make any “bug fixes” or “enhancements” to the Student code, should
that be required.

2.​ Initially this is a copy of the milestone 8 internal release just like the baseline.

Page 12 of 20

https://svn.kuali.org/repos/student/
https://svn.kuali.org/repos/student/enrollment/aggregate/tags/student-2.0.0-M8/

Data Bus Architecture DRAFT DRAFT DRAFT

3.​ Initially this code holds an exact copy of the baseline which is an exact copy of the
milestone release.

Databus Server Config

1.​ Small utility project which provides a shell layer to accessing the properties file that
needs to be specific to that particular server

2.​ Often used to hold the configuration that is specific to each server tier:
a.​ DEV
b.​ TEST
c.​ QA
d.​ PROD

3.​ For example this provides a mechanism to override the location of the properties that
hold the JDBC connection parameters.

Databus Adapter

1.​ Base adapter that will be extended and configured by each college.
2.​ Holds shared code that is needed by all colleges who wish to implement their own

adapter.
3.​ Produces a “Hello World” war file that can be used for testing the application without

accessing any real data.
4.​ Minor Diagram Question: Are the college databus adapters going through the KPlus2

Databus Adapter, or cloned and extended from it? (AB)
a.​ This is a source code dependency diagram so it is the 2nd... the college adapters

extend the base adapter. (NW)

Bristol Databus Adapter

1.​ Bristol’s overrides and configurations to the base adapter.
2.​ Holds configurations that are specific to Bristol’s implementation of Banner
3.​ Holds configurations that are specific to Bristol’s desired authorization controls

Middlesex Databus Adapter

1.​ Middlesex’s overrides and configurations to the base adapter.
2.​ Holds configurations that are specific to Middlesex’s implementation of Banner
3.​ Holds configurations that are specific to Middlesex’s desired authorization controls

Section 4 - Configuration By Colleges

Customizations, Configurations, and Contributions

We define these terms as follows:
1.​ Customizations -- Changes an institution has to makes to the baseline code

a.​ This can be done either via:
i.​ class path overriding where the same class name and package are used

so that the compiler picks up the institutions version of the particular file.
ii.​ Via patches applied to the baseline code

Page 13 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

b.​ Strongly discouraged
c.​ Not expected to survive any upgrades
d.​ Encouraged to instead to divide the change into two parts:

i.​ Institutional specific logic as configurations
ii.​ General fixes that may be contributed back to the project

2.​ Configurations -- Changes made to an institution’s own project that overrides or
enhances the baseline code to meet the needs of the institution

a.​ Expected to survive minor upgrades
b.​ Expected to some chance of surviving major upgrades
c.​ Typically Leverages Spring Bean Injection to accomplish

3.​ Contributions -- Changes made to the baseline code that are intended to be contributed
back to the project

a.​ Two types of Contributions
i.​ Major new functionality, for example:

1.​ This entire Data Bus will be contributed to the project
ii.​ Small fixes, for example:

1.​ Bug fixes
2.​ Small enhancements that are are general and not specific to the

institution
b.​ Each type of contribution has its own mechanism to submit the contribution

i.​ For major contributions you must fill out a special contribution form and
submit it with the source to the project leadership team

ii.​ For small fixes, we create Jira’s and attach a patch file to be applied by
the project team at the next release

Goals

The goals are:
1.​ Allow schools to easily configure the application to enhance/override baseline

processing to match their own needs
2.​ Allow those configurations survive all minor and hopefully most major upgrades

Spring Bean Injection

Standard Spring Bean injection is used to configure all of the adapter components. This way
schools may override some or all of the default adapter logic.

Example ATP Service Injection

In the example below the component that is actually exposed to the bus is the authorization
decorator. This authorization decorator is then configured with two items:

1.​ The underlying atp service that it is guarding
2.​ The role permission service that is used to ask if the user “isAuthorized” to invoke the

method
In both cases these are “Mock” implementations that were designed for the “Hello World” war for
infrastructure testing.

Page 14 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

<bean id="atpServiceMapImpl"
 class="org.kuali.student.kplus2.databus.adapters.AtpServiceMapImpl"></bean>
<bean id="atpServiceMockDataImpl" init-method="init"
 class="org.kuali.student.kplus2.databus.adapters.AtpServiceMockDataImpl">
 <property name="nextDecorator" ref="atpServiceMapImpl"/>
</bean>

<bean id="rolePermissionServiceMapImpl"
class="org.kuali.student.kplus2.databus.adapters.RolePermissionServiceMapImpl"></bean>
<bean id="rolePermissionServiceMockDataImpl" init-method="init"
 class="org.kuali.student.kplus2.databus.adapters.RolePermissionServiceMockDataImpl">
 <property name="nextDecorator" ref="rolePermissionServiceMapImpl"/>
</bean>

<bean id="atpServiceAuthorizationDecorator"
 class="org.kuali.student.kplus2.databus.adapters.AtpServiceAuthorizationDecorator">
 <property name="nextDecorator" ref="atpServiceMockDataImpl"/>
 <property name="rolePermissionService" ref="rolePermissionServiceMockDataImpl"/>
</bean>

<jaxws:endpoint
 id="atpService"
 implementor="#atpServiceAuthorizationDecorator"
 address="/AtpService" />

Example Middlesex Code overrides using Spring Beans

AtpServiceMiddlesexImpl.java

Implements ATP Service impl against Middlesex’s Banner Database
public AtpServiceMiddlesexImpl extends AtpServiceBannerBaseImpl
... Middlesex specific database configurations

RolePermissionServiceMiddlesexImpl.java

Implements the role permission service, perhaps wiring it to it’s LDAP server
public RolePermissionServiceMiddlesexImpl implements RolePermissionService
... Middlesex specific connections to LDAP

AtpServiceAuthorizationServiceDecoratorMiddlesexImpl.java

Implements additional authorization controls not envisioned by the base adapter. For example it
may simply throw PermissionDenied exceptions to any service calls it does not wish to
authorize.

public AtpServiceAuthorizationServiceDecoratorMiddlesexImpl extends
AtpServiceAuthorizationServiceDecorator
... Middlesex overrides to the base line authorization decorator.

Spring Bean Wiring

Page 15 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

<bean id="atpServiceMiddlesexImpl" init-method="init"
 class="org.kuali.student.kplus2.databus.adapters.AtpServiceMiddlesexImpl">
</bean>

<bean id="rolePermissionServiceMiddlesexImpl"
 class="org.kuali.student.kplus2.databus.adapters.RolePermissionServiceMiddlesexImpl">
</bean>

<bean id="atpServiceAuthorizationDecoratorMiddlesexImpl"
class="org.kuali.student.kplus2.databus.adapters.AtpServiceAuthorizationDecoratorMiddlesexImpl
">
 <property name="nextDecorator" ref="atpServiceMiddlesexImpl"/>
 <property name="rolePermissionService" ref="rolePermissionServiceMiddlesexImpl"/>
</bean>

<jaxws:endpoint
 id="atpService"
 implementor="#atpServiceAuthorizationDecoratorMiddlesexImpl"
 address="/AtpService" />

Section 5 -- Internal Architecture of the Data Bus

TODO: this still needs to be written

Question: Are there minimum data points that must be exposed in order for this data share to
work? Do we need to outline these baseline data points? (ab)
​ There is a list of “Opportunities” that came out of the analysis phase
​ ​ See Data Bus Opportunities
​ We not yet decided on exactly what data will be put on the bus as part of the POC.
​ ​ (nw)

Page 16 of 20

https://docs.google.com/document/d/1sFF5lBjPnZaRznHPVe9P9RFSeDOx0CVQ5m3WwCyVNBo/edit

Data Bus Architecture DRAFT DRAFT DRAFT

Diagram

Components

Federator

1.​ The federator implements the specified contract by making calls to each of its delegates
and aggregating the results using federating logic.

Page 17 of 20

Data Bus Architecture DRAFT DRAFT DRAFT

2.​ The results are then available to the REST API

Delegates

1.​ Each delegate uses Soap to point to the remote adapter provided by each college or
EOLWD.

2.​ Each delegate is identified by a key to indicate it’s source, for example:
a.​ “middlesex” for Middlesex College
b.​ “bristol’ for Bristol College
c.​ “moses” for the MOSES system managed by the EOLWD

3.​ Each delegate could be optionally cached to speed repetitive access to the same
information.

4.​ Minor Diagram Update: The Delegates image should be a “multiple”, e.g. several same
shapes over laying one another offset by 2-5 pixels right and bottom. (ab)

a.​ Thanks. Fixed (nw)

Federation Logic

1.​ The federating logic aggregates the data from each of the delegates
2.​ For example if you ask the Federator for all of the Fall Terms it will return you a list of the

Fall Terms defined for Bristol and Middlesex with their respective names, codes and start
and end dates.

a.​ Bristol - Fall 2013, Fall 2014, Fall 2015
b.​ Middlesex -- Fall 2012, Fall 2013, Fall 2014
c.​ Federated: Bristol Fall 2013, Bristol Fall 2014, Bristol Fall 2015, Middlesex Fall

2012, Middlesex Fall of 2013, Middlesex Fall 2014
3.​ The federator will also fetch the detailed information from the appropriate delegate given

it’s id.
a.​ Therefore the federator ID is altered, prefixed with a key to indicate which

delegate it came from.
i.​ For example a if the ID for the Fall 2014 from Bristol is 12345, the

federated id would be “bristol:12345”
ii.​ On the way back in the the “bristol:”is detected and removed and the

bristol delegate is called to return the appropriate ATP.

Rest API

1.​ The Rest API exposes the Student Service Contracts, which are authored as SOAP
contracts as RESTful contracts.

2.​ The URLs are mapped according the the service name and object names, for example:
a.​ http://demo.kplus2.com/services/rest/atp/atp would return all atps regardless of

source
b.​ http://demo.kplus2.com/services/rest/atp/atp/{id} would return the atp identified by

the specified ID.
c.​ Note: these URLS are not yet operational [Question: Is this going to be Saturn or

Jupiter?]
d.​ Additional details will be documented elsewhere

Page 18 of 20

http://demo.kplus2.com/services/rest/atp/atp
http://demo.kplus2.com/services/rest/atp/atp/%7Bid%7D

Data Bus Architecture DRAFT DRAFT DRAFT

3.​ We consider this REST API an “alternate” expression of the service contract

Section 6 -- POC User Interface Wireframe

See MIT_Search.pdf

Section 7 -- College Adapter -- Recommended Configuration

Note: Unlike traditional vendor recommended software configuration the plan is to support a
wide range of configuration options because we want the “ownership” of the this college
connector to be with the school.

Server

●​ Hardware (whatever is your standard configuration for servers)
○​ 8GB Memory should be enough
○​ 10GM hard disk should be enough

■​ We do not store data on the client adapter
■​ It is primarily used to store server logs (in addition to the configuration

software)
●​ Operating System (your choice) whatever can run apache tomcat.

○​ Known to work with
■​ Windows Server
■​ Linux

●​ Use of a VM Image is OK
●​ Application Software

○​ Apache Tomcat 7x or 8x
●​ Database JDBC Driver

○​ Banner: Oracle 6 jdbc driver
○​ Jenzabar: Informix jdbc driver?

●​ SSL Certificate
○​ Can be self signed

●​ Java 1.7
●​ Port 443 or 8443 are the ones that need to be opened to the bus (which runs in the

cloud)
●​ This server has to be connected to two other machines

○​ Your System Database(s)
○​ The Bus’s Federator that is running in the cloud

Installation Process

●​ We have a “Hello World” war that tests the basic server connectivity without connecting
to any data

●​ Then we install the college adapter

Page 19 of 20

https://drive.google.com/file/d/0B_VLjful5tlbSXNUR01mcmZwSk0/view?usp=sharing

Data Bus Architecture DRAFT DRAFT DRAFT

○​ Database connection properties

Page 20 of 20

	Reviews and Revisions
	Purpose
	Goals
	Audience
	Related Documents

	Section 1 - Overall Architecture
	Diagram
	Components
	Encryption
	Authentication
	Authorization
	Performance, Scaling and Caching
	Logging and Remote Management

	
	
	Section 2 - Internal Architecture of Adapters
	Diagram
	Components
	Databases, Properties and Server Config
	Data Access Implementations
	Authorization Decorator
	Authorization Implementation

	
	
	Section 3 - Source Code and Maven Project Structure
	Diagram
	Components
	Kuali Student
	Student Baseline
	Contributions
	Databus Server Config
	Databus Adapter
	Bristol Databus Adapter
	Middlesex Databus Adapter

	Section 4 - Configuration By Colleges
	Customizations, Configurations, and Contributions
	Goals
	Spring Bean Injection
	Example ATP Service Injection
	Example Middlesex Code overrides using Spring Beans
	AtpServiceMiddlesexImpl.java
	RolePermissionServiceMiddlesexImpl.java
	AtpServiceAuthorizationServiceDecoratorMiddlesexImpl.java

	Section 5 -- Internal Architecture of the Data Bus
	Diagram
	Components
	Federator
	Delegates
	Federation Logic
	Rest API

	Section 6 -- POC User Interface Wireframe
	Section 7 -- College Adapter -- Recommended Configuration

