Math Circle Nexus: Connecting points on a

circumference and counting regions

From “Out of the Labyrinth” by Robert and Ellen Kaplan, chapter 4.3
(lightly edited)

Put two points anywhere on a circle’s
circumference and draw the chord
connecting them.

Into how many regions has the circle’s
interior been divided? Clearly two.

E ' 1 And with three points? Obviously four.

Four points give eight regions, when we
draw all possible chords,

and five yield sixteen.

with additional questions and thoughts by our commmunity, and you,
in the right column.

More questions, notes, thoughts:
[ )



Anyone who hasn’t conjectured by now that n points
yield 2"-1 regions has been reading too quickly. Just to make
assurance doubly sure, go back to the n = 1 case: does one
point on the circumference produce 2'-1 = 1 region? Yes.
Having seen five examples, the time is past to test—but ripe
to prove. Oddly enough, this isn’t as easy as it should be: why
the number of regions should double with each successive
point on the boundary isn’t clear.

Eventually you doodle your way
to another example, for want of
anything better to try. Perhaps
when n = 6 the cause behind the
doubling will become clear.

For n = 6 we get thirty-one
regions—which must simply be
an error in our drawing—too
many lines in too small a space

More questions, notes, thoughts:
[ )

More questions, notes, thoughts:
[ )



When we posed this problem to a Math
Circle class of college students, one even
came up with just thirty regions,
because she had drawn a regular
hexagon to start with, and its regularity
caused a region to shrink to an internal
crossing point.

This must be the answer then (“Save the hypothesis!”).
The question should really have been put this way: what is
the maximum number of regions that all possible chords
among n boundary points create in a circle’s interior? Our
thirty-one regions must have come from the six points not
having been distributed maximally enough. As a friend of
ours once remarked, nothing in mathematics is as difficult as
counting. For some reason or other, however, none of us were
able to come up with the desired thirty-two, no matter how
we arranged our six points.

Bob adds, remember how long the Ptolemaic astronomers added
epicycles onto epicycles, to keep some sort of fit between data and theory.
Facts dent our hypothesis but fail to break it.

More questions, notes, thoughts:
[ ]



Two students got hold of a large piece of drawing paper
and decided to see what would happen with seven points on
their circle’s boundary. Meanwhile, the students with their
seven points could come up with no more than fifty-seven
regions instead of the predicted sixty-four.

The students regretfully gave up their beloved powers of
two and began to look at how boundary points, and the
chords among them, create regions. Forced back and back,
they had eventually to ask what a chord was and how it
arose—and this clearing of vision proved to be decisive. Any
two points on the boundary produce a chord; or differently
put, a chord is, in effect, a pair of points. How many chords
will n points therefore produce? One for every two points, so
n points taken two at a time—oh!—,C,.

More questions, notes, thoughts:
[ ]

Avital clarifies, .C, (pronounced “n choose 2") is the number of
handshakes in a room with n people. [or stated more generally, the
number of pairs from a set of n elements]. ,C, turns out to equal ¥2n(n-1).
[much more to say about ,C,, to be explored in a future Nexus case study]

Tifin points out, while writing a table with the number of chords for
various numbers of points, that all of the numbers of chords are all of the
triangular numbers.

More questions, notes, thoughts:
[ )



That doesn’t give all the regions, however, since many
new ones are created where two chords intersect. And what
does that mean? A new region - one for every four points:
2C,. The total number of regions made by n boundary points
should therefore be ,C, + ,C,.

Avital clarifies the segment: Every chord that we draw splits a region
into two. That [counting all chords] doesn’t give all the regions, however,
since many new ones are created where two chords intersect: as you draw a
new chord, immediately as it intersects any existing chord, a region is also
split into two. And what does that mean? The total number of regions made
by n boundary points shall be equal to (the total number of chords) + (the
total number of intersections). We already figured out how to count chords
(,C5), but how do we count intersections?

Each intersection can be identified as the
intersection of two chords. But not all two
chords intersect. Thinking of the case of n=4
for insight, one notices that every set of 4
points on the circumference define a single
intersection point. Vice versa is also true:
each intersection is unique identified by the
four circumference points that are the
edges of the chords that go through the
point. That is, there is a 1-to-]
correspondence between any new region
that is formed by a new intersection and
any set of four points, of which there are ,C, [the number of ways to choose
sets of 4 elements out of n items, which turns out to be equal to
n(n-1)(n-2)(n-3)/24 [TODO: Add Nexus link here]]. Combining this insight
with the previous formula for the total number of regions, we find that the
total number of regions made by n boundary points should therefore be ,C,
+,C..

More questions, notes, thoughts:
[ ]



Try it. For n = 3, for example, ;C, + ;C, = 3 (since 5C, =
3!/2!, and ;C, doesn’t mean anything, so adds no regions), but
this is one less than the needed 4. We need a last bit of fine
tuning: there was, after all, the one region of the circle we
began with, prior to drawing chords—so the number of
regions made by all chords drawn among n boundary points
shouldbel + ,C, + ,C,.

When Jim Tanton presented this problem to a group of
eight- to ten-year-olds in The Math Circle, in 2001, “They
decided,” he writes, “to count everything: the number of
circles C (always 1!), the number of dots along the boundary,
the number of paths drawn L (lines), the number of
intersections I, and the number of regions P (pieces). It soon
appeared that C + L + I = P and ‘CLIP Theory’, as they called
it, was born.

They noted that the theory was true for very simple
diagrams and seemed to remain true if an extra path were
added to a diagram. They reasoned as follows—as soon as
this line intersects a pre-existing path, two things occur: the
count of intersections increases by one, and a region is split
in two, increasing the count of pieces by one. The formula C
+ L + I = P remains balanced. This equation also remains
valid when the path eventually returns to the circumference
of the circle: the path is completed, thereby increasing the
number of lines by one, which is balanced by the fact that a
final region is split in two.”

More questions, notes, thoughts:
[ ]

Avital asks, how would a group come up with the ‘CLIP Theory'?

More questions, notes, thoughts:
[ ]



