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Math Circle Nexus: Connecting points on a 
circumference and counting regions 
From “Out of the Labyrinth” by Robert and Ellen Kaplan, chapter 4.3 
(lightly edited) 

 
 
with additional questions and thoughts by our community, and you, 
in the right column. 

 

⎯⎯⎯ 1 ⎯⎯⎯ 

Put two points anywhere on a circle’s 
circumference and draw the chord 
connecting them. 
 
 

Into how many regions has the circle’s 
interior been divided? Clearly two.  
 

 
 
And with three points? Obviously four.  
 
 
 
 
 
 
Four points give eight regions, when we 
draw all possible chords,  
 
 
 
 
 
and five yield sixteen. 
 

 

  
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 



⎯⎯⎯ 2 ⎯⎯⎯ 

Anyone who hasn’t conjectured by now that n points 
yield 2n–1 regions has been reading too quickly. Just to make 
assurance doubly sure, go back to the n = 1 case: does one 
point on the circumference produce 21–1 = 1 region? Yes. 
Having seen five examples, the time is past to test—but ripe 
to prove. Oddly enough, this isn’t as easy as it should be: why 
the number of regions should double with each successive 
point on the boundary isn’t clear. 

 

  
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 

⎯⎯⎯ 3 ⎯⎯⎯ 

 

Eventually you doodle your way 
to another example, for want of 
anything better to try. Perhaps 
when n = 6 the cause behind the 
doubling will become clear. 
 
For n = 6 we get thirty-one 
regions—which must simply be 
an error in our drawing—too 
many lines in too small a space 

 

  
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 
 

 



 

⎯⎯⎯ 4 ⎯⎯⎯ 

When we posed this problem to a Math 
Circle class of college students, one even 
came up with just thirty regions, 
because she had drawn a regular 
hexagon to start with, and its regularity 
caused a region to shrink to an internal 
crossing point. 
 

This must be the answer then (“Save the hypothesis!”). 
The question should really have been put this way: what is 
the maximum number of regions that all possible chords 
among n boundary points create in a circle’s interior? Our 
thirty-one regions must have come from the six points not 
having been distributed maximally enough. As a friend of 
ours once remarked, nothing in mathematics is as difficult as 
counting. For some reason or other, however, none of us were 
able to come up with the desired thirty-two, no matter how 
we arranged our six points. 

 

  
Bob adds, remember how long the Ptolemaic astronomers added 
epicycles onto epicycles, to keep some sort of fit between data and theory. 
Facts dent our hypothesis but fail to break it.  
 
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 



 

⎯⎯⎯ 5 ⎯⎯⎯ 

Two students got hold of a large piece of drawing paper 
and decided to see what would happen with seven points on 
their circle’s boundary. Meanwhile, the students with their 
seven points could come up with no more than fifty-seven 
regions instead of the predicted sixty-four. 

 

  
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 

⎯⎯⎯ 6 ⎯⎯⎯ 

The students regretfully gave up their beloved powers of 
two and began to look at how boundary points, and the 
chords among them, create regions. Forced back and back, 
they had eventually to ask what a chord was and how it 
arose—and this clearing of vision proved to be decisive. Any 
two points on the boundary produce a chord; or differently 
put, a chord is, in effect, a pair of points. How many chords 
will n points therefore produce? One for every two points, so 
n points taken two at a time—oh!—nC2. 

 

  
Avital clarifies, nC2 (pronounced “n choose 2”) is the number of 
handshakes in a room with n people. [or stated more generally, the 
number of pairs from a set of n elements]. nC2 turns out to equal ½n(n-1). 
[much more to say about nC2, to be explored in a future Nexus case study] 
 
Tifin points out, while writing a table with the number of chords for 
various numbers of points, that all of the numbers of chords are all of the 
triangular numbers. 
 
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 



 

⎯⎯⎯ 7 ⎯⎯⎯ 

That doesn’t give all the regions, however, since many 
new ones are created where two chords intersect. And what 
does that mean? A new region - one for every four points: 
nC4. The total number of regions made by n boundary points 
should therefore be nC2 + nC4. 

 
 

  
Avital clarifies the segment: Every chord that we draw splits a region 

into two. That [counting all chords] doesn’t give all the regions, however, 
since many new ones are created where two chords intersect: as you draw a 
new chord, immediately as it intersects any existing chord, a region is also 
split into two. And what does that mean? The total number of regions made 
by n boundary points shall be equal to (the total number of chords) + (the 
total number of intersections). We already figured out how to count chords 
(nC2), but how do we count intersections?​
 

Each intersection can be identified as the 
intersection of two chords. But not all two 
chords intersect. Thinking of the case of n=4 
for insight, one notices that every set of 4 
points on the circumference define a single 
intersection point. Vice versa is also true: 
each intersection is unique identified by the 
four circumference points that are the 
edges of the chords that go through the 
point. That is, there is a 1-to-1 
correspondence between any new region 
that is formed by a new intersection and 

any set of four points, of which there are nC4 [the number of ways to choose 
sets of 4 elements out of n items, which turns out to be equal to 
n(n-1)(n-2)(n-3)/24 [TODO: Add Nexus link here]]. Combining this insight 
with the previous formula for the total number of regions, we find that the 
total number of regions made by n boundary points should therefore be nC2 
+ nC4. 
 
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 



 

⎯⎯⎯ 8 ⎯⎯⎯ 

Try it. For n = 3, for example, 3C2 + 3C4 = 3 (since 3C2 = 
3!/2!, and 3C4 doesn’t mean anything, so adds no regions), but 
this is one less than the needed 4. We need a last bit of fine 
tuning: there was, after all, the one region of the circle we 
began with, prior to drawing chords—so the number of 
regions made by all chords drawn among n boundary points 
should be 1 + nC2 + nC4. 

 

  
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 

⎯⎯⎯ 9 ⎯⎯⎯ 

When Jim Tanton presented this problem to a group of 
eight- to ten-year-olds in The Math Circle, in 2001, “They 
decided,” he writes, “to count everything: the number of 
circles C (always 1!), the number of dots along the boundary, 
the number of paths drawn L (lines), the number of 
intersections I, and the number of regions P (pieces). It soon 
appeared that C + L + I = P and ‘CLIP Theory’, as they called 
it, was born. 

 
They noted that the theory was true for very simple 

diagrams and seemed to remain true if an extra path were 
added to a diagram. They reasoned as follows—as soon as 
this line intersects a pre-existing path, two things occur: the 
count of intersections increases by one, and a region is split 
in two, increasing the count of pieces by one. The formula C 
+ L + I = P remains balanced. This equation also remains 
valid when the path eventually returns to the circumference 
of the circle: the path is completed, thereby increasing the 
number of lines by one, which is balanced by the fact that a 
final region is split in two.” 

 

  
Avital asks, how would a group come up with the ‘CLIP Theory’? 
 
More questions, notes, thoughts: 
●​ 
 

 
 
 
 

 


