

A true repository cache for Bazel

Authors: wyv@bazel.build (Xudong Yang)​
Status: ​In review
Reviewers: fabian@meumertzhe.im (Fabian Meumertzheim), lberki@google.com (Lukács
Berki), pcloudy@google.com (Yun Peng)
Tracking issue: #12227​
Created: ​2023-09-07
Updated: 2023-09-07

Please read Bazel Code of Conduct before commenting.

Background
●​ Bazel's --repository_cache flag today is technically a misnomer: it's actually a

download cache, containing blobs (often unextracted archives) keyed by their sha256
checksums.

○​ This cache can be (and often is) very safely shared by multiple Bazel
workspaces on the same machine.

●​ There is a need for a true "repository cache": that is, a cache containing actual
repository contents, for example extracted archive contents.

○​ The major use case is for CI -- runners could be pre-populated with a repo
cache to save archive download and extraction time during CI runs.

○​ This cache could also be shared among different Bazel workspaces in many
cases, speeding up the workflow for users with such setups.

Proposed design
Concepts and paths

●​ Amend the "repository cache" concept to include the "true" repo cache.
●​ Taking advantage of the directory layout of the existing --repository_cache flag,

add a new subdirectory for the "true" repo cache:
○​ $REPO_CACHE/content_addressable/sha256 is the download cache. It

already exists today and contains blobs downloaded from the internet, keyed
by their sha256 hash.

http://github.com/Wyverald
http://github.com/fmeum
https://github.com/lberki
https://github.com/meteorcloudy
https://github.com/bazelbuild/bazel/issues/12227
https://www.contributor-covenant.org/version/1/4/code-of-conduct

■​ The download cache contains one subdirectory for each entry. The
name of the subdirectory is the sha256 hash. The subdirectory
contains one file, named file, which contains the content of the blob.

■​ We could also follow the directory name and call this the
content-addressable cache… which is not wrong, but also doesn't
prevent confusion by pointing out that it only serves blob downloads.

○​ $REPO_CACHE/contents is the true repo cache, or the repo contents cache.
■​ Pairs of metadata files and directories exist under this directory, each

pair representing a cache entry.
■​ For each $REPO_CACHE/contents/$FOO directory containing the

cached contents, the file
$REPO_CACHE/contents/$FOO.metadata contains cache entry
metadata. See the sections below for more information.

Inputs
●​ Define the "input" of a repo fetch as any entity that could affect the output of the repo

fetch (i.e. the contents).
○​ Note that we need to distinguish the "identity" of the input (e.g. "the time of

day") from the "value" of the input (e.g. "12:34").
●​ As repo rules can run arbitrary code, the comprehensive list of "inputs" is effectively

everything. Nevertheless, we could split them into three categories.
●​ Predeclared: any input we can know before fetching the repo. This includes:

○​ The repository_rule definition, including the implementation function,
attribute definitions, the list of environment variables its behavior depends on
(environ), etc.

○​ The repo's attribute values. For example, for an http_archive repo, its
name, urls, patches, etc.

○​ The StarlarkSemantics object, which represents flags that affect Starlark
behavior.

●​ Recorded: any input we can record during the fetch and thus know about after the
fetch. This includes:

○​ Any files addressed by a label that the repo rule accessed during the fetch.
○​ Any environment variables accessed through the rctx.getenv method.

●​ Undiscoverable: any input that is used during the fetch but is not
recorded/recordable. This includes:

○​ Any downloads done using rctx.download{,_and_extract}.
■​ Thankfully these are usually reproducible thanks to sha256/integrity

checks.
○​ Any environment variables that are accessed through rctx.os.environ but

not declared in the repository_rule's environ parameter.
○​ Any filesystem reads done by rctx.read that do not originate from labels.
○​ Any filesystem traversal done by path.readdir.
○​ The workspace root reported by rctx.workspace_root.
○​ Potentially any input used by executables run by rctx.execute.

https://bazel.build/rules/lib/globals/bzl#repository_rule.environ

Opt-in to caching
●​ The presence of undiscoverable inputs poses a fundamental challenge to caching

repo contents.
○​ An earlier version of this document proposed to always enable caching for

any non-local repos, but this is dangerous and may result in cache poisoning
that is hard to recover from.

○​ Allowing certain repo rules to explicitly opt in to caching avoids this risk, while
we can already reap most of the benefits of repo caching by having the
built-in http_archive opt in.

●​ Hence we don't cache repo contents by default. A repo rule can return a new
rctx.RepoMetadata object from its implementation function to opt in:

def _http_archive_impl(rctx):​
 # ...​
 return rctx.RepoMetadata(​
 reproducible = rctx.attr.integrity is not None,​
)​
http_archive = repository_rule(implementation = _http_archive_impl, ...)

●​ The rctx.RepoMetadata method takes two parameters:
○​ reproducible: Boolean, defaults to False. If True, the repo contents can be

cached.
○​ attrs_for_reproducibility: Dict or None, defaults to None. Can only

be non-None if reproducible is False. If non-None, represents the
attributes to change so that the repo is reproducible. This replaces the old
semantics of returning a struct from the impl function.

Cache lookup process: broad strokes
●​ Before we fetch a repo R, we need to determine whether a suitable entry already

exists in the cache. Such an entry should have been fetched using the same inputs at
the same values as R.

●​ Before fetching R, we don't know the identities of its recorded inputs. But we do know
the identities (and hence values) of all its predeclared inputs.

●​ Given that, we could adopt a two-step approach:
○​ The first step is a simple lookup by the hash of R's predeclared inputs.

■​ If no cache entry matches, it's a definite cache miss, so we can look to
write a new entry into the cache.

○​ The second step is to verify that the entry is up-to-date. Each entry advertises
its recorded inputs (both the identities and the hashes of values at time of
fetch), and we simply check that the hashes match the up-to-date values.

■​ If the hashes are up-to-date, it's a cache hit and we can simply reuse
the cache contents.

■​ Otherwise, we need to refetch a fresh R and put it into the cache
instead, while being mindful of race conditions.

Cache lookup process: details
●​ Definitions

○​ For a repo R, let Pre(R) be the set of R's predeclared inputs, and Rec(R) be the
set of R's recorded inputs. These are representations of the identities of those
inputs (for example, Rec(R) could contain which files R accessed during its
fetch).

○​ Let Val(I) be the value of an input I (or the set of values of a set of inputs I).
For example, for an F in Rec(R) that represents a file accessed during R's
fetch, Val(F) represents the contents of that file.

○​ Let Hash() be a hash function that produces a digest. Which function is used
doesn't particularly matter; we can assume SHA-256 for example.

1.​ Before fetching a repo R, compute the hash of R's predeclared input values, HPre(R) =
Hash(Val(Pre(R))). If the file $REPO_CACHE/contents/${HPre(R)}.metadata
doesn't exist, this is a cache miss; go to step 3.

2.​ The directory $REPO_CACHE/contents/${HPre(R)} represents a previously
fetched repo Rc which is a candidate to be reused as R.

○​ The file $REPO_CACHE/contents/${HPre(R)}.metadata should contain
a list of pairs, representing all elements of Rec(Rc) and the hash of each
individual element at the time of Rc's fetch.

○​ If, for all <I, HV> in the list of pairs in
$REPO_CACHE/contents/${HPre(R)}.metadata, Hash(Val(I)) = HV, then
we've located a cache hit. Go to step 3e.

○​ Otherwise, we need to refetch R. Go to step 3.
3.​ [Cache miss] We need to fetch R and write an entry into the repo cache.

a.​ See if the file $REPO_CACHE/contents/${HPre(R)}.lock exists. If so,
wait until it's gone, and go to step 3e.

b.​ Create the file $REPO_CACHE/contents/${HPre(R)}.lock.
c.​ Clear the directory $REPO_CACHE/contents/${HPre(R)} and fetch R into

it. Populate $REPO_CACHE/contents/${HPre(R)}.metadata with the
list of pairs being <I, Hash(Val(I))> for all I in Rec(R).

d.​ Delete $REPO_CACHE/contents/${HPre(R)}.lock.
e.​ [Cache hit] Symlink/hardlink R's originally designated location in the output

base to $REPO_CACHE/contents/${HPre(R)}.

Labels in inputs
●​ Labels in inputs require special attention as the repository cache is shared across all

workspaces on the machine.
○​ The same canonical label @@foo//:bar could mean different things in

different workspaces.
○​ The principle we need to uphold is that a cache hit should yield the same

contents as a fresh fetch (disregarding any differences resulting from
undiscoverable inputs).

●​ Most notably, labels are the identities of the only kind of recorded inputs.

○​ In step 2, when we try to calculate Hash(Val(I)), I here is a label that was used
during the fetch of Rc, and was thus resolved in the context of the workspace
that Rc originated from.

○​ But to calculate Hash(Val(I)), we need to resolve I in the context of the
workspace that R originates from, which may end up being a completely
different file! But that's okay, since if the hash of the contents remains the
same, we can assume that the result of the fetch will remain the same.

○​ Note that technically the repo rule could resolve the label to an absolute path
and perform different logic based on the resolved path.

■​ However, this is likely uncommon at best and pathological at worst, so
we can count this kind of usage as an undiscoverable input.

■​ In the event that this case is deemed important, we can split this input
into two: 1) identity=label, value=resolved absolute path; 2)
identity=resolved absolute path, value=file contents. This may lead to
thrashing.

●​ Labels can also appear in repo attribute values, as part of the values of predeclared
inputs.

○​ These can be stored verbatim as canonical labels without problems.
○​ Consider two workspaces W1 and W2, each containing a repo R1 and R2

respectively. R1 and R2 have identical predeclared inputs, including a label
@@foo//:bar. Even if this label points to completely different files when
resolved in the two workspaces, as long as those files have the same
contents (checked by the recorded input hash step), R1 and R2 should have the
exact same contents.

Automatic eviction
●​ Since any change to HPre(R) would result in a new cache entry, and the repo cache is

shared among multiple workspaces, we'd likely need to consider having some sort of
automatic cache entry eviction policy.

●​ A simple TTL-based (time-to-live) policy should suffice.
○​ We could add a flag --repository_cache_ttl defaulting to 30d to

specify the TTL.
○​ In step 3e, when we create the symlink/hardlink, we would additionally update

the "last used time" of the cache entry in its metadata file.
○​ The Bazel server could periodically go through all entries in the repo cache

and clear out any entries that are past TTL. This could be done in a
background thread, potentially rate-limited to once per day.

Manual eviction / opt-out
●​ In the current design, there is no way to forcibly refetch a repo. This is potentially

problematic due to the various undiscoverable inputs affecting the result of fetches,
but not being reflected in cache metadata whatsoever.

○​ Without a repo cache, the user could rely on the sledgehammer bazel
clean --expunge. But this command would essentially become

synonymous with bazel clean if a true repo cache is used, unless the user
explicitly clears the repo cache too.

●​ To combat this, we could introduce some sort of manual eviction command. This
could be tagged onto bazel fetch: the flag --force could be used to forcibly
refetch the repo even if it's already in the cache, overwriting the cache contents.

●​ A repo rule could also simply opt out of ever being cached by specifying
local=True.

○​ This is consistent with its semantics today: a local repo rule never checks its
marker file.

Race conditions
●​ Since the repo cache is shared by multiple workspaces (and hence potentially

multiple running Bazel server processes), we need to be aware of potential race
conditions.

●​ The existing download cache doesn't seem to guard against concurrent usage by
multiple Bazel servers. But entries in the download cache are single files, and a cache
write is a single mv operation (see code), so there was hardly any reason for concern.

●​ With the true repo cache, things get a bit more complicated.
○​ First, multiple files are involved; having two processes populate the same

directory, or having one process populate a directory and another read from it,
are both very dangerous.

○​ Second, we can't very easily mv a fetched repo directory, since there may be
symlinks pointing inside.

●​ As described in steps 3a and 3b above, we could employ a "lock" file that serves no
other purpose than to signal that another Bazel server is currently writing into a
cache entry.

○​ This "lock" file could simply contain the PID of the active server.
○​ Not sure if Skyframe has facilities to wait for the disappearance of a file, but

such an operation should be technically feasible.

Interaction with
 Directory watching API for repo rules

●​ With , all file reads and filesystem traversals Directory watching API for repo rules
done with rctx (except inside rctx.execute) become recorded inputs instead of
undiscoverable inputs.

●​ A major difference is that, in that design, we could always store the absolute file path
as the "key" in the marker data; but with the true repo cache, we need to be careful to
always store the original form of the input. That is, if it's a label, store it as a label; if
it's an absolute path, store it as an absolute path, etc.

○​ Consider the following scenario: in a workspace W, we fetch the repo R,
during which we perform a rctx.read(Label("@@foo//:bar")).
@@foo//:bar corresponds to the absolute path

https://docs.google.com/document/u/0/d/17RZKMuMjAIgNfFdrsLhqNsMTQDSS-BBA-S-fCSBPV7M/edit
https://docs.google.com/document/u/0/d/17RZKMuMjAIgNfFdrsLhqNsMTQDSS-BBA-S-fCSBPV7M/edit
https://cs.opensource.google/bazel/bazel/+/master:src/main/java/com/google/devtools/build/lib/bazel/repository/cache/RepositoryCache.java;drc=87d6e9ab89d6119a429daede7ae1c719e4244971;l=237

${OUTPUT_BASE(W)}/external/foo/bar. In R's metadata file, we record
this absolute path, and its hash at time of fetch.

○​ Now in workspace W', we fetch the repo R', which has exactly the same
definition as R in W. So it necessarily has the same prerecorded input hash
(i.e. HPre(R) = HPre(R')). In step 2 when we try to verify the metadata file, we
see that ${OUTPUT_BASE(W)}/external/foo/bar's hash hasn't changed,
so we reuse the cache entry. But that's wrong! Because in W, @@foo//:bar
corresponds to the absolute path
${OUTPUT_BASE(W)}/external/foo/bar, which could have completely
different contents.

○​ If we store the label itself (@@foo//:bar) in the metadata instead, then when
fetching R', we'd be checking the hash of
${OUTPUT_BASE(W')}/external/foo/bar (note the W'), thus
recognizing that the file should have been updated.

●​ To deduce the "original form" of an input (while fetching R in the workspace W):
○​ If the input is a file inside ${OUTPUT_BASE(W)}/external/$R, then this

file is not really an "input" -- it must have been produced by an earlier step in
the repo rule. So we don't store this one.

○​ If the input is a file inside another subdirectory of
${OUTPUT_BASE(W)}/external, for example
${OUTPUT_BASE(W)}/external/foo/bar/baz, then we store it as the
label @@foo//bar:baz.

○​ If the input is a file inside W itself, for example $W/foo/bar, then we store it
as the label @@//foo:bar.

○​ Otherwise, we store it as an absolute path.
○​ The decision process is similar for readdir()'d directories.

●​ Note that there is still the obscure pathological case of labels with apparent repo
names directly used in the repo rule implementation (e.g.
rctx.read(Label("@foo//:bar"))).

○​ This is dangerous because technically, this label could point to @@foo//:bar
in workspace W, but @@foo'//:bar in workspace W'. In the metadata file,
the best we could do is to store it as @@foo//:bar, and when we try to fetch
R', this would be an erroneous cache hit if @@foo'//:bar in W' has different
contents.

○​ This is only possible in a very obscure setting, so we can probably afford to
ignore it.

○​ Note that if the label with apparent repo names is passed in as an attribute to
the repo rule, then there is no issue (since the repo rule only sees a canonical
repo name).

Unresolved questions
Alternative: second layer of lookups instead of mutation

●​ This document originally proposed an "append-only" cache with no mutation.
○​ The first-step lookup using HPre(R) would yield a set of candidates, instead of

just one. Each candidate would have its own metadata file advertising its
Rec(Rc) and corresponding hashes.

○​ Then we would do a second layer of lookups by iterating through each
candidate, and looking for one whose advertised metadata is up-to-date.

○​ If we don't find one (cache miss), instead of mutating an entry, we would write
a new entry under HPre(R) by fetching R there and recording its metadata. The
directory structure would be accordingly adjusted.

●​ This setup is quite a bit more complex, but avoids thrashing in the rare case where
Val(Rec(Rc)) for a candidate entry Rc could be different depending on the workspace,
even if Rec(Rc) is the same.

○​ In English, that means: the file addressed by the label @@foo//:bar in
workspace W could have hash X, but the file addressed by the same label in
workspace W' could have a different hash X'.

○​ Both entries are valid and "up-to-date". With the
mutation-instead-of-second-layer approach, we'd potentially be constantly
refetching if workspaces W and W' are both active.

●​ Additionally, the second layer of lookups could help in other cases where inputs
evaluate differently based on the workspace.

○​ For example, the workspace root (rctx.workspace_root) could be a
recorded input to make sure running the same repo rule in different
workspaces doesn't result in cache poisoning.

○​ We don't want the workspace root to be a predeclared input, as that would
preclude any repos from different workspaces being shared. So the best we
could do is to make the workspace root a recorded input, in the event that
rctx.workspace_root is ever called.

■​ This is actually fairly hard to achieve today, as
rctx.workspace_root is a field and not a method, which means
that it has no access to the StarlarkThread (code comment).

●​ TODO: Find out whether the two scenarios above are likely enough that we should
switch to the second layer of lookups.

Worse race conditions?
●​ Does Skyframe notice if a source artifact suddenly changes from under us during a

build? This has a higher chance of happening with a true repo cache.
●​ TODO: Find out if we have means of defense against this scenario.

https://cs.opensource.google/bazel/bazel/+/master:src/main/java/net/starlark/java/annot/StarlarkMethod.java;l=56-60;drc=50565cf7795fe8eab28167b43cea08cdacc614e5

Document History

Date Description

 2023-09-07 First proposal

	
	A true repository cache for Bazel
	Background
	Proposed design
	Concepts and paths
	Inputs
	Opt-in to caching
	Cache lookup process: broad strokes
	Cache lookup process: details
	Labels in inputs
	Automatic eviction
	Manual eviction / opt-out
	Race conditions
	Interaction with Directory watching API for repo rules

	Unresolved questions
	Alternative: second layer of lookups instead of mutation
	Worse race conditions?

	Document History

