

Contents

Contents​ 1

List of Tables​ 3

List of Figures​ 4

Chapter 1​ 8
INTRODUCTION​ 8
1.1 AXI Read and Write Channels​ 9
1.2 AXI Read Transactions​ 10
1.3 AXI Write Transactions​ 11
1.4 Interface Signal Definition​ 13
1.5 Key Features​ 16
TO_DO Key features :​ 16

1.6 Reset​ 17
1.7 Write Channel Signal Descriptions :​ 17

Awburst: MASTER - Type of transfer​ 18
fixed :​ 18
Incr :​ 18
wrap :​ 18
Write Data channel​ 19
Write Response​ 19
Read Address:​ 19
Valid default value is 0, other signals can be anything​ 19
Read Response:​ 19
1.8 Handshake Process:​ 20
1.9 Relationships between the channels:​ 21
Read transaction dependencies​ 21
Write Response dependencies​ 22

Chapter 2​ 24
ARCHITECTURE​ 24

2.1 AXI4 AVIP Testbench Architecture​ 24

Chapter 3​ 26
IMPLEMENTATION​ 26

3.1 Pin Interface​ 26
3.2 Testbench Components​ 28

3.2.1 AXI Hdl Top​ 28
3.2.2 AXI Interface​ 29
3.2.3 AXI Master Agent BFM Module​ 29
3.2.4 AXI Master Driver BFM Interface​ 31
3.2.5 AXI Master Monitor BFM Interface​ 37
3.2.6 AXI Slave Agent BFM Module​ 37

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 1

3.2.7 AXI Slave Driver BFM Interface​ 38
3.2.8 AXI Slave Monitor BFM Interface​ 42
3.2.9 AXI HVL_TOP​ 43
3.2.10 AXI Environment​ 43
3.2.11 AXI Scoreboard​ 43
3.2.12 AXI Virtual Sequencer​ 47
3.2.13 AXI Master Agent​ 48
3.2.14 AXI Master Sequencer​ 49
3.2.15 AXI Master Driver Proxy​ 49
3.2.16 AXI Master Monitor Proxy​ 53
3.2.17 AXI Slave Agent​ 54
3.2.18 AXI Slave Sequencer​ 55
3.2.19 AXI Slave Driver Proxy​ 55
3.2.20 AXI Slave Monitor Proxy​ 60
3.2.21 UVM Verbosity​ 61

Chapter 4​ 63
4.1.Package Content​ 63

Chapter 5​ 66
Configuration​ 66

5.1 Global package variables​ 66
5.2 Master agent configuration​ 68
5.3 Slave agent configuration​ 68
5.4 Environment configuration​ 69
5.5 Memory Mapping​ 69

Chapter 6​ 73
Verification Plan​ 73

6.1 Verification plan​ 73
Verification Plan Link:​ 73
axi4 avip vplan​ 73

AXI4 Write Channel Transfers​ 74
AXI4 Read Channel Transfers​ 74

6.2 Template of Verification Plan​ 75
6.3 Sections for different test Scenarios​ 77
Creating the different Sections for different test cases to be developed in the point of
implementing the test scenarios​ 77

6.3.1 Directed test​ 77
6.3.2 Random test​ 78
6.3.3 Cross test​ 79

Chapter 7​ 80
Assertion Plan​ 80

7.1 Assertion Plan overview​ 80
7.1.1 What are assertions?​ 80

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 2

7.1.2 Why do we use it?​ 80
7.1.3 Benefits of Assertions​ 80

7.2 Template of Assertion Plan​ 80
7.3 Assertion Condition​ 80

7.3.1 AXI_WA_STABLE_SIGNALS_CHECK​ 81
7.3.2. AXI_WA_UNKNOWN_SIGNALS_CHECK​ 81
7.3.3. AXI_WA_VALID_STABLE_CHECK​ 82

Chapter 8​ 83
Coverage​ 83

8.1 Functional Coverage​ 83
8.2 Uvm_Subscriber​ 83

8.2.1 Analysis export​ 84
8.2.2 Write function​ 84

8.3 Covergroup​ 85
8.4 Coverpoints​ 86

8.5 Illegal bins​ 86
8.6 Creation of the covergroup​ 87
8.7 Sampling of the covergroup​ 87
8.8 Checking for the coverage​ 87

Chapter 9​ 90
Test Cases​ 90

9.1 Test Flow​ 90
9.2 AXI4 Test Cases Flow Chart​ 90
9.3 Transaction​ 91

9.3.1 Master_tx​ 91
9.3.2 Slave_tx​ 93

9.4 Sequences​ 102
9.5 Virtual sequences​ 114
9.6 Test Cases​ 123
9.7 Testlists​ 130

Chapter 10​ 133
User Guide​ 133

Chapter 11​ 134
References​ 134

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 3

List of Tables
Table no Name of the table pg.no

Table 1.1 Write address signals…………………………………………………… ​ 13
Table 1.2 Write data signals………………………………………………………. ​ 14
Table 1.3 Write response signals…………………………………………………. ​ 14
Table 1.4 Read address signals……………………………………………………​ 15
Table 1.5 Read data signals……………………………………………………….​ 16
Table 3.1 AXI4 pins used to interface to external devices ………………………..​ 26
Table 3.2 UVM Verbosity Priorities ………………………………………………​ 64
Table 4.1 Directory Path ………………………………………………………….​ 67
Table 5.1 Global Package Variable……………………………..…………………​ 69
Table 5.2 Master_agent_config …………………………………………………..​ 70
Table 5.3 Slave_agent_config ……………………………………………………​ 71
Table 5.4 Env_config …………………………………………………………….​ 71
Table 6.1 Directed test names for Blocking Transfers……………………………..​ 79
Table 6.2 Directed test names for Non Blocking Transfers………………………..​ 80
Table 6.3 Random test name for Blocking Transfers………………………………​ 81
Table 6.4 Random test name for Non Blocking Transfers…………………………​ 81
Table 6.5 Cross test name for Non Blocking Transfers……………………………​ 81
Table 7.1 Assertion Table…………………………………………………………..​ 82
Table 9.1 Describing constraint in master and slave transactions………………….​ 96
Table 9.2. Sequence methods……………………………………………………….​ 104
Table 9.3 Describing master sequences for Blocking and Non Blocking………….​ 105
Table 9.4 Describing slave sequences for Blocking and Non Blocking…………..​ 110
Table 9.5 Describing virtual sequences for Blocking and Non Blocking…………​ 118
Table 9.6 Describing Test cases…………………………………………………..​ 128
Table 9.7 Regression list of Test cases……………………………………………​ 132

List of Figures

Fig no Name of the Figure Pg no

Fig 1.1 AXI Read and write Channels 10

Fig 1.2 Read Channels of AXI 11

Fig 1.3 Write Channels of AXI 12

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 4

Fig 1.4 Burst types 17

Fig 1.5 Valid before Ready 20

Fig 1.6 Ready before valid 20

Fig 1.7 Ready with valid 21

Fig 1.8 Read transaction dependencies 21

Fig 1.9 Write transaction dependencies 22

Fig 1.10 Write response dependencies 23

Fig 2.1 AXI4 AVIP Testbench Architecture 24

Fig 3.1 HDL Top 29

Fig 3.2 AXI4 driver bfm instantiation in axi4 master agent bfm code snippet 30

Fig 3.3 AXI4 monitor bfm instantiation in axi4 master agent bfm code snippet 31

Fig 3.4 Flowchart of axi_write_address_channel_task 32

Fig 3.5 Flowchart of axi_write_data_channel_task 33

Fig 3.6 Flowchart of axi_write_response_channel_task 34

Fig 3.7 Flowchart of axi_read_address_channel_task 35

Fig 3.8 Flowchart of axi_read_data_channel_task 36

Fig 3.9 AXI4 Slave driver bfm instantiation in axi4 slave agent bfm code snippet 37

Fig 3.10 AXI4 Slave monitor bfm instantiation in axi4 slave agent bfm code snippet 38

Fig 3.11 Slave driver Proxy and BFM flow chart 39

Fig 3.12 Write_address_phase 39

Fig 3.13 Write_data_phase 40

Fig 3.14 Write_response_phase 41

Fig 3.15 Read_address_phase 42

Fig 3.16 Read_data_phase 43

Fig 3.17 HVL Top 44

Fig 3.18 Connection of analysis port of the monitor to the scoreboard analysis fifo 45

Fig 3.19 Declaration of master and slave analysis port 45

Fig 3.20 Shows the declaration of master & slave analysis fifo in the scoreboard 46

Fig 3.21 Creation of the master & slave analysis port 46

Fig 3.22 Connection between the analysis port & analysis fifo export in the env class 47

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 5

Fig 3.23 Use of get method to get the packet from monitor analysis port 47

Fig 3.24 The comparison of the master write address with slave write address 47

Fig 3.25 Flow chart of the scoreboard report phase 48

Fig 3.26 AXI4 master agent build phase code snippet 49

Fig 3.27 AXI4 master agent connect phase code snippet 50

Fig 3.28 Run phase of AXI4 master driver proxy code snippet 51

Fig 3.29 Flowchart for the run phase of axi4 master driver proxy 51

Fig 3.30 Flowchart of write_task 52

Fig 3.31 Flowchart of run_task 53

Fig 3.32 Flowchart of master_monitor_proxy 54

Fig 3.33 Connection between master monitor and slave monitor to scoreboard 55

Fig 3.34 Semaphore and fios in Scoreboard 55

Fig 3.35 AXI4 Slave agent build phase code snippet 56

Fig 3.36 AXI4 Slave agent connect phase code snippet 57

Fig 3.37 Flow chart for slave driver proxy write task using semaphore 58

Fig 3.38 Slave driver proxywrite_task 59

Fig 3.39 Flowchart for slave driver proxy read task using semaphore 60

Fig 3.40 Slave driver proxy read_task 61

Fig 3.41 AXI4 slave driver proxy Flow chart for write and read 62

Fig 3.42 flowchart of slave_monitor_proxy 63

Fig 4.1 Package Structure of AXI$_AVIP 66

Fig 5.5.1 Memory Mapping 72

Fig 5.5.2 Global parameter declaration 72

Fig 5.5.3 Associative array declaration 73

Fig 5.5.4 Function of memory mapping for max and min value 73

Fig 5.5.5 Local variable declaration in function 74

Fig 5.5.6 Memory Mapping procedure in master agent configuration 74

Fig 5.5.7 Declaration of slave min and max address range 74

Fig 5.5.8 Memory mapping procedure in slave agent configuration 75

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 6

Fig 6.2.1 Verification plan Template 78

Fig 6.2.2 Verification plan Section D is Description for tests 78

Fig 6.2.3 Verification plan Section G and H is for Test Names and Status 78

Fig 7.1 Assertion code for stable signal check 83

Fig 7.2 Assertion code for unknown signal check 83

Fig 7.3 Assertion code for valid stable check 84

Fig 8.1 Uvm_subscriber 86

Fig 8.2 Monitor and coverage connection 87

Fig 8.3 Write function 87

Fig 8.4 Covergroup 88

Fig 8.5 option.per_instance 88

Fig 8.6 option.comment 89

Fig 8.7 Coverpoint 89

Fig 8.8 Creation of covergroup 90

Fig 8.9 Sampling of the covergroup 90

Fig 8.10 Log file 90

Fig 8.11 Coverage report 90

Fig 8.12 HTML window showing all coverage 91

Fig 8.13 All coverpoints present in the Covergroup 91

Fig 8.14 Individual Coverpoint Hit 92

Fig 9.1 Test flow 93

Fig 9.2 AXI4 test case flow chart 93

Fig 9.3 Constraints for write address 95

Fig 9.4 Constraints for write data 95

Fig 9.5 Constraints for read address 96

Fig 9.6 Constraints for memory 96

Fig 9.7 Constraints for read data response and wait states 97

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 7

Fig 9.8 do_copy method 99

Fig 9.9 do_compare method 100

Fig 9.10 do_print method 101

Fig 9.11 Slave_tx do_copy method 102

Fig 9.12 Slave_tx do_compare method 103

Fig 9.13 Slave_tx do_print method 104

Fig 9.14 Flow chart for sequence methods 105

Fig 9.15 Master blocking seq body method 116

Fig 9.16 Master non_blocking sequence 116

Fig 9.17 Slave blocking seq body method 116

Fig 9.18 Slave non_blocking sequence body method 117

Fig 9.19 Virtual base sequence 117

Fig 9.20 Virtual base sequence body 118

Fig 9.21 axi4_virtual_bk_8b_read_data_seq body 118

Fig 9.22 axi4_virtual_nbk_8b_read_data_seq body method 119

Fig 9.23 Base_test 126

Fig 9.24 Setup_env_cfg 127

Fig 9.25 Master_agent_cfg setup 127

Fig 9.26 Slave_agent_cfg setup 128

Fig 9.27 Example for 8bit read data test 128

Fig 9.28 Run_phase of 8bit_test 129

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 8

Table 7.1 Assertion Table

Assertion Label Description

AXI_WA_STABLE_SIGNALS_CHECK All signals must remain stable after AWVALID is asserted
until AWREADY IS LOW

AXI_WA_UNKNOWN_SIGNALS_CHECK A value of X on signals is not permitted when AWVALID
is HIGH

AXI_WA_VALID_STABLE_CHECK When AWVALID is asserted, then it must remain asserted
until AWREADY is HIGH

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 9

Chapter 1
 INTRODUCTION

AMBA (Advanced Microcontroller Bus Architecture) is open standard for communication
and management of the functional blocks in SoC, provide different on chip communication
protocols like CHI (Coherence Hub Interface), AXI (Advanced eXtensible Interface), ACE
(Advanced Coherency Extension), AHB (Advanced High Performance Bus), APB
(Advanced Peripheral Bus) developed by ARM (Advanced RISC Machine) . Flexibility of
AMBA protocols is IP reuse for different SoC designs with different area, power and
performance requirements.
As the AMBA protocols are widely used open standards which ensures compatibility
between IPs of different suppliers for the SoC , with compatibility it enables low friction
integration and reuse of IP which catalyse the faster time to market. The AMBA AXI
protocol specification is defined to implement a high frequency, high bandwidth interface
across a wide variety of applications in embedded, automotive and cellphones. It does not
require complex bridge implementation for different peripheral devices. The AXI protocol
includes some new features which extend previous versions and is compatible to complement
CHI.
There are 3 types of AXI4-Interfaces (AMBA 4.0):

●​ AXI4 (Full AXI4): For high-performance memory-mapped requirements.
●​ AXI4-Lite: For simple, low-throughput memory-mapped communication (for

example, to and from control and status registers).
●​ AXI4-Stream: For high-speed streaming data

1.1 AXI Read and Write Channels

The AXI protocol defines 5 channels:

●​ 2 are used for Read transactions

○​ read address

○​ read data

●​ 3 are used for Write transactions

○​ Write address

○​ Write data

○​ Write response

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 10

 Fig 1.1 AXI Read and write Channels

The AXI is a burst-based protocol that defines the following transaction channels
independently:

1.​ Address Read(AR)
2.​ Read data(R)
3.​ Address Write(AW)
4.​ Write data(W)
5.​ Write response(B)

Control information about the kind of data to be delivered is carried by an address
channel. AXI protocol entails the following steps:

1.​ Enables the distribution of address information before the actual data transmission
2.​ Supports a large number of open transactions
3.​ Allows transactions to be completed out of order

A channel is an independent collection of AXI signals associated with the VALID and
READY signals.

Note: An AXI4/AXI3/AXI4-Lite Interface can be read only (only includes the 2 Read
channels) or write only (only includes the 3 Write channels).

A piece of data transmitted on a single channel is called a transfer. A transfer happens when
both the VALID and READY signals are high while there is a rising edge of the clock.

1.2 AXI Read Transactions

An AXI Read transaction requires multiple transfers on the 2 Read channels.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 11

●​ First, the Address Read Channel is sent from the Master to the Slave to set the
address and some control signals.

●​ Then the data for this address is transmitted from the Slave to the Master on the Read
data channel.

Note that, as per the figure below, there can be multiple data transfers per address. This type
of transaction is called a burst.

 Fig 1.2 Read Channels of AXI

1.3 AXI Write Transactions

An AXI Write transaction requires multiple transfers on the 3 Read channels.

●​ First, the Address Write Channel is sent Master to the Slave to set the address and
some control signals.

●​ Then the data for this address is transmitted Master to the Slave on the Write data
channel.

●​ Finally the write response is sent from the Slave to the Master on the Write Response
Channel to indicate if the transfer was successful.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 12

 Fig 1.3 Write Channels of AXI

The possible response values on the Write Response Channel are:

●​ OKAY (0b00): Normal access success. Indicates that a normal access has been
successful

●​ EXOKAY (0b01): Exclusive access okay.
●​ SLVERR (0b10): Slave error. The slave was reached successfully but the slave wishes

to return an error condition to the originating master (for example, data read not
valid).

●​ DECERR (0b11): Decode error. Generated, typically by an interconnect component,
to indicate that there is no slave at the transaction address

Note: Read transactions also have a response value but this response is transmitted as part of
the Read Response Channel

+

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 13

 1.4 Interface Signal Definition

 Table 1.1: Write Address Signals

 Signal Source Supporting Version Definition of Signal

AWID[x:0] Manager /
Master

AXI3 and AXI4 Provides ID for each transaction

 AWADDR[31:0] Manager /
Master

AXI3 and AXI4 Address for write request

 AWLEN[7:0] Manager /
Master

 AXI4 Number of transfers support in
each transaction

 AWSIZE[2:0] Manager /
Master

 AXI3 and AXI4 No. of bytes to be transfer in each beat

 AWBURST[1:0] Manager /
Master

AXI3 and AXI4 Indicates type of burst to be performed

 AWLOCK Manager /
Master

 AXI4 Indicates the atomic characteristics of
the transaction

 AWCACHE[3:0] Manager /
Master

AXI3 and AXI4 This signal indicates the
system performance

 AWPROT[2:0] Manager /
Master

AXI3 and AXI4 Provides system level security and
privileged access to each transaction.

AWQoS[3:0] Manager /
Master

 AXI4 Use to prioritise the transactions

 AWREGION[3:0] Manager /
Master

 AXI4 Region identifier

AWVALID Manager /
Master

AXI3 and AXI4 Use to validate the associated
signal inorder to pass valid

information.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 14

AWREADY Subordinat
e/slave

AXI3 and AXI4 Indicates weather slave is ready for the
transactions.

Table 1.2: Write data Signals

 Signal Source Supporting Version Definition of Signal

 AWDATA[x:0] Manager /
Master

 AXI3 and AXI4 Write data signal

 AWSTRB[x:0] Manager /
Master

 AXI3 and AXI4 Used to send valid bytes for each transfer

AWLAST Manager /
Master

 AXI3 and AXI4 Indicates last transfer for the transaction

AWVALID Manager /
Master

 AXI3 and AXI4 Used to validate the associated signal
in order to pass valid information.

 AWREADY Subordinate/
slave

 AXI3 and AXI4 Indicates weather slave is ready for the
transactions.

Table 1.3 : Write Response Signals

 Signal Source Supporting Version Definition of Signal

BID[x:0] Subordinate/slave AXI3 and AXI4 Provides ID for each write transaction

 BRSEP[1:0] Subordinate/slave AXI3 and AXI4 Write Response signal

BVALID Subordinate/slave AXI3 and AXI4 Use to validate the associated signal in
order to pass valid information.

BREADY Manager / Master AXI3 and AXI4 Indicates weather master is ready for
the transactions.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 15

Table 1.4 : Read Address Signals

 Signal Source

Supporting Version Definition of Signal

 ARID[x:0] Manager /
Master

AXI3 and AXI4 Provides ID for each transaction

 ARADDR[31:0] Manager /
Master

AXI3 and AXI4 Address for write request

 ARLEN[7:0]

Manager /
Master

 AXI4

 No.of transfers support in each
transaction

 ARSIZE[2:0] Manager /
Master

AXI3 and AXI4 No. of bytes to be transfer in each beat

 ARBURST[1:0] Manager /
Master

AXI3 and AXI4 Indicates type of burst to be performed

 ARLOCK Manager /
Master

 AXI4 Indicates the atomic characteristics
of the transaction

 ARCACHE[3:0] Manager /
Master

AXI3 and AXI4 This signal indicates the system
performance

 ARPROT[2:0] Manager /
Master

AXI3 and AXI4 Provides system level security and
privileged access to each transaction.

 ARQoS[3:0]
Manager /

Master AXI4 Use to prioritise the transactions

 ARREGION[3:0] Manager /
Master

 AXI4 Region identifier

 ARVALID Manager /
Master

AXI3 and AXI4 Use to validate the​associated signal
inorder to​ pass valid information.

 ARREADY Subordinate/slave AXI3 and AXI4 Indicates weather slave is
ready for the transactions.

Table 1.5 : Read data Signals

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 16

Signal Source Supporting Version Definition of Signal

 RID[x:0] Subordinate/ slave AXI3 and AXI4 Provides ID for each read
transaction

RDATA[x:0] Subordinate/ slave AXI3 and AXI4 Read data signal

 RESP[1:0] Subordinate/ slave AXI3 and AXI4 Read response signal

 RLAST Subordinate/ slave AXI3 and AXI4 Indicates last transfer for the
transaction

 RVALID Subordinate/ slave AXI3 and AXI4 Use to validate the
associated signal in order to

pass valid information.

 READY Manager / Master AXI3 and AXI4 Indicates weather master
is ready for the
transactions.

1.5 Key Features

1.​ Axi4 supports write and read in parallel
2.​ Blocking and Non Blocking Transfers
3.​ Separate address/control and data phases
4.​ Support for unaligned data transfers, using byte strobes
5.​ Uses burst-based transactions with only the start address issued
6.​ Support for issuing multiple outstanding addresses
7.​ Support for narrow transfers

TO_DO Key features : ​

 1.Out-of-Order

2. Low-power features
​
1.6 Reset
Reset assertion is asynchronous to clock and deassertion is synchronous to clock

1.7 Write Channel Signal Descriptions :
 Awid : Master - Write Address ID

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 17

1.​ Each transaction has its own id.
Awaddr : Master - Write Address

1.​ Write address for the first transfer.
2.​ Drives Address of the first-byte in the tx to the slave.
3.​ The slave must calculate the subsequent transfers in the burst.
4.​ Burst must not cross a 4KB address boundary.​

Awlength : Master - Burst Length

1.​ Gives the exact number of transfers in a burst.
2.​ Burst_length = AWLEN + 1
3.​ AWLEN[7:0], for write transfers for INCR burst(new feature for AXI4)
4.​ AWLEN[3:0], for write transfers for FIXED, WRAP burst
5.​ AWLEN for different burst types :

a.​ FIXED : 1 to 16
b.​ INCR​ : 1 to 256 transfers
c.​ WRAP : 2,4,8 or 16

6.​ Early termination of burst is not supported.
a.​ Hence, master can reduce data transfer in write burst by deasserting pstobe.

Fig 1.4 Burst types​

Awsize : Master - Size of each transfer

1.​ Gives the size of each transfer in the burst.
AxSIZE[2:0]​ Bytes in transfer​
0b000 ​​ ​ 1
0b001​ ​ ​ 2​
0b010 ​​ ​ 4
0b011 ​​ ​ 8
0b100 ​​ ​ 16
0b101 ​​ ​ 32
0b110 ​​ ​ 64
0b111 ​​ ​ 128​

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 18

2.​ No of address bytes of transfer in the burst will be calculated as two powers of
AWSIZE of Address Channel bus.

3.​ If the AXI bus is wider than the burst size, the AXI interface must determine from the
transfer address which byte lanes of the data bus to use for each transfer. See Data
read and write structure.

4.​ The size of any transfer must not exceed the data bus width of either agent in the
transaction.

Awburst: MASTER - Type of transfer

fixed :

1.​ The start address is the same for all transfers in the burst.
2.​ The byte lanes still may differ based on the assertion of WSTRB
3.​ This burst type is used for repeated accesses to the same location such as when

loading or emptying a FIFO.

Incr :

1.​ The address will be incremented for the next beat/transfer from the start address.
2.​ The increment will be based on the size of the transfer.
3.​ This burst type is used for access to normal sequential memory.

wrap :

1.​ A wrapping burst is similar to an incrementing burst, except that the address wraps
around to a lower address if an upper address limit is reached.

2.​ Restrictions to wrap burst :
a.​ Start address must be aligned to the size of each transfer.
b.​ Length of bursts must be 2,4,8 or 16b transfers

3.​ Lowest address used by burst is aligned to the total size of the data to be transferred.
a.​ Lowest address is the wrap boundary.
b.​ Wrap Boundary = size of each transfer on the burst * total num of transfers

4.​ It increments till the wrap boundary from the start address, i.e.,
a.​ Incremented address = wrap_boundary + total size of data to be transferred

5.​ The start address can be higher than the wrap boundary. This means that the address wraps for
any WRAP burst for which the first address is higher than the wrap boundary.

6.​ AxBURST[1:0]​ Burst type
0b00 ​ ​ ​ FIXED
0b01 ​ ​ ​ INCR
0b10 ​ ​ ​ WRAP
0b11 ​ ​ ​ Reserved

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 19

Write Data channel

1.​ Data bus width : 8,16,32,64,128,256,512,1024 bits wide
2.​ Different bus width with for write and read data channels
3.​ Write strobe feature
4.​ Different combination of strobes
5.​ Valid scenario - 8bits data on 32 bits data bus
6.​ Invalid scenarios - 16bits data on 32 bits data bus but strobes like 111 - invalid

Note: The read channel doesn't require buffer because the data sent from slave with the ID
will be routed correctly by the interconnect. Hence, no buffer on this side.

Write Response

1.​ Valid default value is 0, other signals can be anything
2.​ Ready can be low or high in default state.
3.​ It should be high, only if master can accept the response in 1 clock cycle - transfer in

1 clock cycle
4.​ If low, it takes 2 clock cycles min.
5.​ Response is driven only after the write-data transaction is completed.

Read Address:

1.​ Valid default value is 0, other signals can be anything

2.​ Ready can be low or high in default state.
3.​ If high, it should be able to accept the data.- transfer in 1 clock cycle
4.​ If low, it takes 2 clock cycles min. Hence, not recommended but based on

implementation

Read Response:

1.​ Valid default value is 0, other signals can be anything
2.​ Ready can be low or high in default state.
3.​ If high, master should be able to accept the data.- transfer in 1 clock cycle
4.​ If low, it takes 2 clock cycles min.
5.​ Response, along with data, is driven only after the read address transaction is

completed.

1.8 Handshake Process:

All five transaction channels use the same VALID/READY handshake process to transfer
address, data, and control information. This two-way flow control mechanism means both the
master and slave can control the rate at which the information moves between master and
slave. The source generates the VALID signal to indicate when the address, data or control

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 20

information is available. The destination generates the READY signal to indicate that it can
accept the information. Transfer occurs only when both the VALID and READY signals are
HIGH.

In Figure below the source presents the address, data or control information after T1 and
asserts the VALID signal. The destination asserts the READY signal after T2, and the source
must keep its information stable until the transfer occurs at T3, when this assertion is
recognized.

 Fig 1.5 Valid before Ready

Once VALID is asserted it must remain asserted until the handshake occurs, at a rising clock
edge at which VALID and READY are both asserted.

In Figure below , the destination asserts READY, after T1, before the address, data or control
information is valid, indicating that it can accept the information. The source presents the
information, and asserts VALID, after T2, and the transfer occurs at T3, when this assertion is
recognized. In this case, transfer occurs in a single cycle

 Fig 1.6 Ready before valid

A destination is permitted to wait for VALID to be asserted before asserting the serted, it is
permitted to deassert REcorresponding READY. If READY is asADY before VALID is
asserted.

In Figure below both the source and destination happen to indicate, after T1, that they can
transfer the address, data or control information. In this case the transfer occurs at the rising

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 21

clock edge when the assertion of both VALID and READY can be recognized. This means
the transfer occurs at T2.

 Fig 1.7 Ready with valid

1.9 Relationships between the channels:

Read transaction dependencies

Figure below shows the read transaction handshake signal dependencies, and shows that, in a
read transaction:

1.​ The master must not wait for the slave to assert ARREADY before asserting
ARVALID

2.​ The slave can wait for ARVALID to be asserted before it asserts ARREADY
3.​ The slave can assert ARREADY before ARVALID is asserted
4.​ The slave must wait for both ARVALID and ARREADY to be asserted before it

asserts RVALID to indicate that valid data is available
5.​ The slave must not wait for the master to assert RREADY before asserting
6.​ The master can wait for RVALID to be asserted before it asserts RREADY
7.​ The master can assert RREADY before RVALID is asserted.

 Fig 1.8 Read transaction dependencies

Write transaction dependencies

1.​ The master must not wait for the slave to assert AWREADY or WREADY before
asserting AWVALID or WVALID

2.​ The slave can wait for AWVALID or WVALID, or both before asserting AWREADY

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 22

3.​ The slave can assert AWREADY before AWVALID or WVALID, or both, are
asserted

4.​ The slave can wait for AWVALID or WVALID, or both, before asserting WREADY
5.​ The slave can assert WREADY before AWVALID or WVALID, or both, are asserted
6.​ The slave must wait for both WVALID and WREADY to be asserted before asserting

BVALID the slave must also wait for WLAST to be asserted before asserting
BVALID, because the write response, BRESP, must be signaled only after the last
data transfer of a write transaction

7.​ The slave must not wait for the master to assert BREADY before asserting BVALID
8.​ The master can wait for BVALID before asserting BREADY
9.​ The master can assert BREADY before BVALID is asserted.

 Fig 1.9 Write transaction dependencies

Write Response dependencies

 The master must not wait for the slave to assert AWREADY or WREADY before asserting
AWVALID or WVALID

1.​ The slave can wait for AWVALID or WVALID, or both, before asserting
AWREADY

2.​ The slave can assert AWREADY before AWVALID or WVALID, or both, are
asserted

3.​ The slave can wait for AWVALID or WVALID, or both, before asserting WREADY
4.​ The slave can assert WREADY before AWVALID or WVALID, or both, are asserted
5.​ The slave must wait for AWVALID, AWREADY, WVALID, and WREADY to be

asserted before asserting BVALID the slave must also wait for WLAST to be asserted
before asserting BVALID because the write response, BRESP must be signaled only
after the last data transfer of a write transaction

6.​ The slave must not wait for the master to assert BREADY before asserting BVALID
7.​ The master can wait for BVALID before asserting BREADY
8.​ The master can assert BREADY before BVALID is asserted.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 23

\ Fig 1.10 Write response dependencies

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 24

Chapter 2
ARCHITECTURE

2.1 AXI4 AVIP Testbench Architecture

The accelerated VIP is divided into the two top modules as HVL and HDL top as shown in
fig 2.1. The whole idea of using Accelerated VIP is to push the synthesizable part of the
testbench into the separate top module along with the interface and it is named as HDL TOP.
and the unsynthesizable part is pushed into the HVL TOP it provides the ability to run the
longer tests quickly. This particular testbench can be used for the simulation as well as the
emulation based on the mode of operation.

HVL TOP has the design which is untimed and the transactions flow from both master virtual
sequence and slave virtual sequence onto the AXI4 I/F through the BFM Proxy and BFM and
gets the data from monitor BFM and uses the data to do checks using scoreboard and
coverage

 Fig 2.1 AXI4 AVIP Testbench Architecture

HDL TOP consists of the design part which is timed and synthesizable, Clock and reset
signals are generated in the HDL TOP. Bus Functional Models (BFMs) i.e synthesizable part
of drivers and monitors are present in HDL TOP, proxy. BFMs also have the back pointers to
it’s proxy to call non-blocking methods which are defined in the

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 25

https://app.diagrams.net/?page-id=p-IF3tSiSZ9v2-CU6Jr6&scale=auto#G1ubTJYXEl53K4z_e4LiGykleoysFWJ0dO

We have the tasks and functions within the drivers and monitors which are called by the
driver and monitor proxy inside the HVL. This is how the data is transferred between the
HVL TOP and HDL TOP.

HDL and HVL use transaction based communication to enable the information rich
transactions and since clock is generated within the HDL TOP inside the emulator it allows
the emulator to run at full speed.

..

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 26

Chapter 3
IMPLEMENTATION

3.1 Pin Interface
Table 3.1 shows the AXI4 pins used to interface to external device

Signal Master
Direction

 Slave
Direction

Width of
signals

Description

aclk input input 1 bit System generated clock

areset_n input input 1 bit It is an active low reset generated by system

awid output input 4 bits This signal is the identification tag for the write
address group of signals.

awaddr output input 32 bits The write address gives the address of the first
transfer in a write burst transaction.

awlen output input 4 bits The burst length gives the exact number of transfers
in a burst. This information determines the number
of data transfers associated with the address.

awsize output input 3 bits This signal indicates the size of each transfer in the
burst.

awburst output input 2 bits The burst type and the size information, determine
how the address for each transfer within the burst is
calculated.

awlock output input 2 bits Provides additional information about the atomic
characteristics of the transfer.

awcache output input 4 bits This signal indicates how transactions are required to
progress through a system.

awprot output input 3 bits This signal indicates the privilege and security level
of the transaction, and whether the transaction is a
data access or an instruction access.

awqos output input 4 bits The qos identifier is sent for each write transaction.

awregion output input 4 bits Permits a single physical interface on a slave to be
used for multiple logical interfaces.

awuser output input 4 bits Optional User-defined signal in the write address
channel.

awvalid output input 1 bit This signal indicates that the channel is signalling
valid write address and control information.

awready input output 1 bit This signal indicates that the slave is ready to accept
an address and associated control signals.

wdata output input 32 bits Write data.

wstrb output input 4 bits This signal indicates which byte lanes hold valid
data. There is one write strobe bit for each eight bits

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 27

of the write data bus.

wlast output input 1 bit This signal indicates the last transfer in a write burst.

wuser output input 4 bits Optional User-defined signal in the write data
channel.

wvalid output input 1 bit This signal indicates that valid write data and
strobes are available.

wready input output 1 bit This signal indicates that the slave can accept the
write data.

bid input output 4 bits This signal is the ID tag of the write response.

bresp input output 2 bits This signal indicates the status of the write
transaction.

buser input output 4 bits Optional User-defined signal in the write response
channel.

bvalid input output 1 bit This signal indicates that the channel is signalling a
valid write response.

bready output input 1 bit This signal indicates that the master can accept a
write response.

arid output input 4 bits This signal is the identification tag for the read
address group of signals.

araddr output input 32 bits The read address gives the address of the first
transfer in a read burst transaction.

arlen output input 8 bits This signal indicates the exact number of transfers in
a burst.

arsize output input 3 bits This signal indicates the size of each transfer in the
burst.

arburst output input 2 bits The burst type and the size information determine
how the address for each transfer within the burst is
calculated.

arlock output input 2 bits This signal provides additional information about the
atomic characteristics of the transfer.

arcache output input 4 bits This signal indicates how transactions are required to
progress through a system.

arprot output input 3 bits This signal indicates the privilege and security level
of the transaction, and whether the transaction is a
data access or an instruction access.

arqos output input 4 bits qos identifier sent for each read transaction.

arregion output input 4 bits Permits a single physical interface on a slave to be
used for multiple logical interfaces.

aruser output input 4 bits Optional User-defined signal in the read address
channel.

arvalid output input 1 bit This signal indicates that the channel is signalling
valid read address and control information.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 28

arready input output 1 bit This signal indicates that the slave is ready to accept
an address and associated control signals.

rid input output 4 bits This signal is the identification tag for the read data
group of signals generated by the slave.

rdata input output 32 bits Read data.

rresp input output 2 bits This signal indicates the status of the read transfer.

rlast input output 1 bit This signal indicates the last transfer in a read burst.

ruser input output 4 bits Optional User-defined signal in the read data
channel.

rvalid input output 1 bit This signal indicates that the channel is signalling
the required read data.

rready output input 1 bit This signal indicates that the master can accept the
read data and response information.

For more details refer - axi4_avip_verification_plan

3.2 Testbench Components
In this section, testbench components of the axi4-avip are discussed

`3.2.1 AXI HDL Top

Hdl top is synthesizable, where generation of the clock and reset is done. Instantiation of the
axi4 interface handle, master agent bfm handle and slave agent bfm handle is done as shown
in Fig. 3.1.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 29

https://docs.google.com/spreadsheets/d/1HmtvdNBb5i50BvFm5sXSR1QLDs9PknjTUoEwuLZt2TU/edit?usp=sharing

Fig 3.1 HDL Top

3.2.2 AXI Interface

Importing the global packages
Passing Signals: aclk, aresetn
Declaration of signals: awid, awaddr, awlen, awsize, awburst, awlock, awcache, awprot,
awvalid, awready, wdata, wstrb, wlast, wuser, valid, wready, bid, bresp,buser, bvalid, bready,
arid, araddr, arlen, arsize, arburst, arlock, arcache, arprot, arqos, arregion, aruser, arvalid,
arready, rid, rdata, rresp, rlast, ruser, rvali, rready, are declared as logic type.

3.2.3 AXI Master Agent BFM Module

Instantiates the below two interfaces here
a)​ axi4 master driver bfm and
b)​ axi4 master monitor bfm.

Instantiates the axi4 master assertions and binds it with the axi4 master monitor bfm handle
and maps the signals of axi4 master assertions with the axi4 interface signals. The axi4
interface signals are passed to the axi4 master driver and monitor bfm in instantiations as
shown in fig. 3.2 and fig.3.3

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 30

https://app.diagrams.net/?page-id=mLOXku7P1kY2qyuBJ1RT&scale=auto#G1JVV_WSuw7JmacUD1LMFLpqpNTtioKOCr

Fig 3.2 AXI4 driver bfm instantiation in axi4 master agent bfm code snippet

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 31

 Fig 3.3 AXI4 monitor bfm instantiation in axi4 master agent bfm code snippet

3.2.4 AXI Master Driver BFM Interface

 Axi4 master driver bfm is an interface where it will get the signals from the axi4 interface. It
has a method drive_to_bfm which will be called by the apb master driver proxy which drives
the awaddr and awdata to the axi4 interface. Fig. 3.4 gives the flowchart of the write address
channel for master bfm. Fig. 3.5 gives the flowchart of the write data channel for master bfm.
Fig. 3.6 gives the flowchart of the write response channel for master bfm. Fig. 3.7 gives the
flowchart of the read address channel for master bfm. Fig. 3.8 gives the flowchart of the read
data channel for master bfm.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 32

 Fig 3.4 Flowchart of axi4_write_address_channel_task

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 33

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1AbbyJY8AnZLYpxynQ0VpzIHfoqmaCWju

 Fig 3.5 Flowchart of axi4_write_data_channel_task

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 34

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1y62nqyqOEYyOjrXxiBs1uYHMrx4yZ986

 Fig 3.6 Flowchart of axi4_write_response_channel_task

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 35

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1NV9VklzP9Bne8seqk9DLdtVvWX40_eYd

 Fig 3.7 Flowchart of axi4_read_address_channel_task

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 36

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1jPldNYYMjAhmcw_Diz7VQsZmyKnhou8Y

 Fig 3.8 Flowchart of axi4_read_data_channel_task

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 37

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1L-3ZK8aRQxFnUGwNQD58q1qUNxqlTFY-

3.2.5 AXI Master Monitor BFM Interface

Axi4 master monitor bfm is an interface where it will get the signals from the apb interface. It
has a method sample_data which will be called by the axi4 master monitor proxy which
samples the {paddr, pselx, pwdata and prdata} data from the axi4 interface. After sampling
the data, the axi4 master monitor bfm interface sends the data to the axi4 master monitor
proxy using the output port of sample_data task.

3.2.6 AXI Slave Agent BFM Module

Instantiates the below two interfaces here
1.​ axi4 slave driver bfm and
2.​ axi4 slave monitor bfm.

Instantiates the axi4 slave assertions and binds it with the axi4 slave monitor bfm handle and
maps the signals of axi4 slave assertions with the axi4 interface signals. The axi4 interface
signals are passed to the axi4 slave driver and monitor bfm in instantiations as shown in fig.
3.9 and fig. 3.10.

 Fig 3.9 AXI4 slave driver bfm instantiation in axi4 slave agent bfm code snippet

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 38

 Fig 3.10 AXI4 slave monitor bfm instantiation in axi4 slave agent bfm code snippet

3.2.7 AXI Slave Driver BFM Interface

AXI4 slave driver bfm is an interface where it will get the signals from the axi4 interface. It
has a five method calls 3 for Write Channels and 2 for Read Channels

1.​ Write address phase
2.​ Write data phase
3.​ Write response phase

 4. Read Address phase
 5. Read data phase
which will be called by the axi4 slave driver proxy which drives the address, data and
response of write and read channels to the axi4 interface.

 Figure 3.11 gives the reference for the instantiation of axi4 slave driver bfm.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 39

Fig 3.11 Slave driver Proxy and BFM flow chart

The above figure describes the flowchart of slave driver proxy and slave driver bfm and
detailed flow chart of slave driver proxy and slave driver bfm is explained below:
Write Address Phase:

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 40

https://app.diagrams.net/?page-id=ONpo063wtQbKL9kU1_Jz&scale=auto#G1uI0DcPUr-Te6rwjwv500nXgyeWj0sqMw

Fig 3.12 Write_address_phase

Write data Phase:

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 41

https://app.diagrams.net/?page-id=N-rCDMjeoxyJ37_AoZIS&scale=auto#G1S6QRlizGVC0HVPqDM81B5X-dqFaR5Flc

​ ​ ​ ​ Fig 3.13 Write_data_phase

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 42

https://app.diagrams.net/?page-id=we7XL41ykJM_0k4DG3wE&scale=auto#G1-asMR-9HGcMH8UgA5-7rYFdhNigDXeQI

Write Response Phase:

​ ​ ​ ​ Fig 3.14 Write_response_phase

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 43

https://app.diagrams.net/?page-id=TS46Vz9ezLykGJmJBcxE&scale=auto#G1CIFHnAUN1FjuP329Ci2XGz_pJ-DBY58D

Read Address Phase:

​ ​ ​ ​ Fig 3.15 Read_address_phase

Read data Phase:

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 44

https://app.diagrams.net/?page-id=sk0NtJlVxcKhxUfJ1JME&scale=auto#G1os0Q3GUNErL2ETQn1Ym3DnEKNY9rjX98

​ ​ ​ ​ Fig 3.16 Read_data_phase

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 45

https://app.diagrams.net/?page-id=OPSKOgxGMq32bcITCJkZ&scale=auto#G1KQhAP7yzWBSR4UWXumauI6HbROvlSBhW

3.2.8 AXI Slave Monitor BFM Interface

AXI4 slave monitor bfm is an interface where it will get the signals from the axi4 interface. It
has a method sample_data which will be called by the axi4 slave monitor proxy which
samples the {pwdata and prdata} from the axi4 interface. After sampling the data, the axi4
slave monitor bfm interface sends the data to the axi4 slave monitor proxy using the output
port of sample_data task. fig. gives the reference for the instantiation of axi4 slave monitor
bfm.

3.2.9 AXI HVL_TOP

 Fig 3.17 HVL Top

In top test is running by using the run_test(“test_name”) method, which will start the whole
tb components. Fig. 3.17 give the HVL top hierarchy.

3.2.10 AXI Environment

Environment has the below components
a.​ axi4_scoreboard
b.​ axi4_virtual_sequencer
c.​ axi4_master_agent
d.​ axi4_slave_agent

In the build phase, env_cfg handle will be called and create the memory for the above
declared components.
In the connect phase, the axi4_master_monitor_proxy is connected to axi4_scoreboard and
axi4_slave_monitor_proxy to axi4_scoreboard using analysis port and analysis fifo.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 46

https://app.diagrams.net/?page-id=mLOXku7P1kY2qyuBJ1RT&scale=auto#G1Z3TrQ2RwqBPTu0p8n7FWCV82vH--hjJC

3.2.11 AXI Scoreboard

A scoreboard is a verification component that contains checkers and verifies the functionality
of a design. The scoreboard is implemented by extending uvm_ scoreboard.

The purpose of the scoreboard in the AXI4-AVIP project is to

1.​ Compare the Write address, write data,write response, read address and read data
from the slave and master

2.​ Keep track of pass and failure rates identified in the comparison process
3.​ Report comparison success/failures result at the end of the simulation

The scoreboard consists of five analysis fifo’s which receive the packets from the analysis
port of the monitor class. fig. 3.18 shows the connection between the analysis port and
analysis fifo.

Fig 3.18 connection of the analysis ports of the monitor to the scoreboard analysis fifo

In the monitor proxy class of master and slave, five analysis ports are declared. Fig 3.19
shows the declaration of master analysis port and slave analysis port in the master monitor
proxy and slave monitor proxy

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 47

https://app.diagrams.net/?page-id=EKfIjE_sCjHFqhEPV4bs&scale=auto#G1XJH_omoDEePmhjyQ74xM5QhWRhXgAohE

Fig. 3.19 declaration of master and slave analysis port

In the scoreboard, five analysis fifo’s are declared. Fig 3.20 shows the declaration of master
analysis fiifo and slave analysis fifo in the scoreboard.

Fig 3.20 shows the declaration of master and slave analysis fifo in the scoreboard

In the constructor, create objects for the five declared analysis fifo’s. Fig 3.21 shows the
creation of the master and slave analysis port.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 48

Fig 3.21 creation of the master and slave analysis port

In connect phase of the environment class, the analysis port of both master and slave monitor
proxy class is connected to the analysis export of the master and slave fifo in the scoreboard.
Fig 3.22 shows the connection made between the monitor analysis port and the scoreboard
fifo’s in the connect phase of the env class.

 Fig 3.22 Connection done between the analysis port and analysis fifo exportin the env class

In the run phase of the scoreboard, the get() method is used to get the data packet from the
monitor write() method. Fig 3.23 shows the use of the get() method to get the transaction
from the monitor analysis port.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 49

Fig 3.23 Use of get method to get the packet from monitor analysis port

The Comparison of the write address and write address from the master monitor and slave
monitor is done in the run phase. Fig 3.24 shows the comparison of the master write address
with slave write address.

Fig 3.24 The comparison of the master write address with slave write address

Similarly, the comparison is done for the write data,write response ,read address and read
data as well.

After the run phase, the next is the check phase.In check Phase of the scoreboard, with the
help of counter variables we verify the following

a.​ Whether all write address ,write data,write response,read address and read data
comparisons are successful

b.​ Whether all transactions from master and slave monitors are equal
c.​ Whether both FIFO’s are empty or not

Fig 3.25 is the flow chart of the scoreboard report phase, which explains checks made to
identify the success/failure rates.

scoreboard run phase​
Click on the below flowchart of the scoreboard and there just click the link and access
the flowchart.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 50

https://app.diagrams.net/#G1StljYlW1gHPHpK9TDIHpctletwrjtIKd

Fig 3.25 Flow chart of the scoreboard report phase

3.2.12 AXI Virtual Sequencer

In virtual sequencer , declaring the handles for environment_configuration, master_sequencer
and slave_sequencer. In the build phase, environment_configuration and creating the memory
for master_sequencer and slave_sequencer.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 51

https://app.diagrams.net/?page-id=4_c9y6we9Q9WBR1rlTHk&scale=auto#G1StljYlW1gHPHpK9TDIHpctletwrjtIKd

3.2.13 AXI Master Agent

AXI4 master agent component is a class extending from uvm_agent. It gets the axi4 master
agent config handle and based on that we will create and connect the components. It creates
the axi4 master sequencer and axi4 master driver only if the axi4 master agent is active which
will depend on the value of is_active variable declared in the axi4 master agent configuration
file. The axi4 master coverage is created in build_phase if the has_coverage variable is 1
which is declared in the axi4 master agent configuration file. Please refer to figure 3.26 for
the axi4 master agent build_phase code snippet.

AXI4 master agent build phase has creation of,

a.​ axi4 master sequencer
b.​ axi4 master driver proxy
c.​ axi4 master monitor proxy
d.​ axi4 master coverage components.

Fig 3.26 AXI4 master agent build phase code snippet

AXI4 master agent configuration handles declared in the above created components will be
mapped here in the connect phase. The axi4 master driver proxy and axi4 master sequencer
are connected using TLM ports if the axi4 master agent is active. The axi4 master coverage’s
analysis_export will be connected to axi4 master monitor proxy’s master_analysis_port in
connect_phase as shown in fig. 3.27

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 52

Fig 3.27 AXI$ master agent connect phase code snippet

3.2.14 AXI Master Sequencer

AXI4 master sequencer component is a parameterised class of type axi4 master transaction,
extending uvm_sequencer. AXI4 sequencer sends the data from the axi4 master sequences to
the axi4 driver proxy.

3.2.15 AXI Master Driver Proxy

Axi4 master driver proxy has the connection to master driver bfm in the end of elaboration
phase. The master driver proxy run phase calls the write and read tasks in parallel using fork join as
shown in fig. 3.28 and fig. 3.29

The write task checks for the transfer type, if it is BLOCKING_WRITE then write_address,
write_data and write_response will be called sequentially. The req packet will be converted to struct
packet and then passed to each task. The received response will be converted to a struct packet using
to_class as shown in fig. 3.30

If the transfer type is NON_BLOCKING_WRITE, then write_address, write_data and
write_response will be called in parallel using the fork join_any process control statements. Initially,
the req packet is converted to struct packet and kept in write fifo so that write data and write response
channels can make use of it.

The write address channel uses the process awaddr_process to control the fork join . The write
address channel gets the req packet and sends it to the bfm write address channel. Later it takes the
output and converts it back to the req packet.

The write data channel uses the process wdata_process to control the fork join . Before
starting the transfer, it gets the semaphore key of the wdata_process. The write data channel peeks the
req packet from the analysis write fifo and sends it to the bfm write data channel. Later it takes the

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 53

output and converts it back to the req packet. As the transfer is completed it will put back the key in
the semaphore.

The write response channel uses the process wresponse_process to control the fork join .
Before starting the transfer, it gets the semaphore key of the wresponse_process. The write response
channel gets the req packet from the analysis write fifo and sends it to the bfm write data channel.
Later, it takes the output and converts it back to the req packet. As the transfer is completed it will put
back the key in the semaphore.

After the completion of the fork, join_any awaddr.await() method will make sure that the
write address process has to be completed.
Now the master driver proxy calls the item_done method to complete the transaction.
The similar transaction process will be happening in the READ TRANSFER as well as shown in fig.
3.31

Fig 3.28 run phase of axi4 master driver proxy code snippet

Fig 3.29 Flowchart for run phase of axi4 master driver proxy

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 54

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G1FEce7ZvH7qc6gIrF70lQRpIrWE9aXNW-

Fig 3.30 flowchart of write_task()

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 55

https://app.diagrams.net/?page-id=noliSqfRwC08Wg8oAYoe&scale=auto#G14rQOkM8ppahU8xxne2lXc19h9pXM19t0

Fig 3.31 flowchart of read_task()​

3.2.16 AXI Master Monitor Proxy

AXI4 master monitor proxy component is a class extending uvm_monitor. It gets the axi4
master agent config handle and based on the configurations we will sample the signals. It
declares and creates the axi4 master analysis ports to send the sampled data. The axi4 slave
monitor proxy will get the sampled data from axi4 master monitor bfm as shown in figure
3.32

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 56

https://app.diagrams.net/?page-id=CuT0oa77oxDmWly9-tzg&scale=auto#G1zt8tPawWQ_3ivJXED72hYUCDdpdjH687

Fig 3.32 flowchart of master_monitor_proxy

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 57

https://app.diagrams.net/?page-id=wIguMtNdrgXhtNu1_bu3&scale=auto#G10tVpDs3_P7O85PLZJNBy3LA1P2fdxewK

Fig 3.33 Connection between master monitor and slave monitor to scoreboard

The data sampled in the master monitor proxy from master monitor bfm will be combined
and sent to scoreboard by using the analysis port. For getting five channels of data into the
scoreboard we use five fifos to store the data. The axi4_master_write_address_analysis_fifo
gets the write address and stores it, axi4_master_write_data_analysis_fifo gets write data and
stores it, axi4_master_write_response_analysis_fifo and stores response in it. Similarly the
fifos store the read address in axi4_master_read_address_analysis_fifo and read data in
axi4_master_read_data_analysis_fifo respectively. The data received in the fifos are called
using the get method and call their respective tasks which compares the master and slave data
as shown in fig.3.34. We use semaphore to synchronization the tasks. All the tasks must be
done concurrently to get data in upcoming channels as shown in fig 3.34.

The connections made between the master monitor proxy and scoreboard are shown in the
above fig.3.33.

Fig 3.34 Semaphore and fios in Scoreboard

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 58

​

3.2.17 AXI Slave Agent

AXI4 slave agent component is a class extending uvm_agent. It gets the axi4 slave agent
configuration and based on that we will create and connect the components. It creates the
axi4 slave sequencer and axi4 slave driver only if the axi4 slave agent is active which will
depend on the value of is_active variable declared in the axi4 slave agent configuration file.
The axi4 slave coverage is created in build_phase if has_covergae variable is 1 which is
declared in the axi4 slave agent configuration file as shown in fig. 3.35

AXI4 slave agent build phase has creation of,

a.​ axi4 slave sequencer
b.​ axi4 slave driver proxy
c.​ axi4 slave monitor proxy
d.​ axi4 slave coverage components.

Fig 3.35 AXI4 slave agent build phase code snippet

AXI4 slave agent configuration handles declared in the above created components will be
mapped here in the connect phase. The axi4 slave driver proxy and axi4 slave sequencer is
connected using tlm ports if the axi4 slave agent is active. The axi4 slave coverage’s
analysis_export will be connected to axi4 slave monitor proxy’s slave_analysis_port in
connect_phase as shown in fig 3.36.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 59

Fig 3.36 AXI4 slave agent connect phase code snippet

3.2.18 AXI Slave Sequencer

AXI4 slave sequencer component is a parameterised class of type axi4 slave transaction,
extending uvm_sequencer. AXI4 sequencer sends the data from the axi4 slave sequences to
the axi4 driver proxy as shown in fig. 3.37.

3.2.19 AXI Slave Driver Proxy

Axi4 slave driver proxy has the connection to slave driver bfm in the end of elaboration phase. The
slave driver proxy run phase has the write and read tasks calls in parallel using fork join.

Write task:
 Write address:

p 1: The write address channel uses a fine grain concept called pSterocess addr_tx to control
the address phase which is in fork join.
Step 2 : Convert the transactions , configurations into structure type,
Step 3: Sample the write address phase from the bfm.
Step 4: Converting the structure type into the transaction type,
Step 5: Then put the sampled write address into fifo.

Write data:
Step 1: The write data channel uses a fine grain concept called process data_tx to check the
status of the write data phase which is in fork join.
Step 2: Get a semaphore key and get data from input fifo.
Step 3: Convert the transactions , configurations into structure type,

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 60

 Step 4: Sample the write data phase from the bfm.
Step 5: Converting the structure type into the transaction type,
Step 6 : Then put the sampled write data into output fifo and put back the semaphore key

 Write Response:

Step 1: The write response channel uses a fine grain concept called process response_tx to
check the status of the write response phase which is in fork join.
Step 2 : Get a semaphore key and get a response from fifo.
Step 3 : Convert the transactions , configurations into structure type,
Step 4 : Drive the write response phase from the bfm.
Step 5: Convert the structure type into the transaction type, and get write address and write
data from the fifo and combine write address,write data and write response into Packet

 Fig 3.37 Flow chart for slave driver proxy write task using semaphore

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 61

https://app.diagrams.net/?page-id=C5RBs43oDa-KdzZeNtuy&scale=auto#G11Yi4lK-vTBEsiEc-OPHh5Alu00ZYclUt

 Fig 3.38 Slave driver proxy write_task

Read Task:
Read Address:

Step1 : The read channel uses a fine grain concept called process rd_addr to control the read
address phase which is in fork join.
Step 2 : Convert the transactions , configurations into structure type,
Step 3: Sample the read address phase from the bfm.
Step 4: Converting the structure type into the transaction type,
Step 5: Then put the sampled read address into fifo.

 Read data:

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 62

https://app.diagrams.net/?page-id=uLvYPeOVL31qsSLgY4Zc&scale=auto#G1ZO8e59pQ3rw1wAzm43wPYxmfFJAd_UE4

Step 1: The read data channel uses a fine grain concept called process rd_data to check the
status of the read data phase which is in the fork join.
Step 2 : Get a semaphore key and get data from fifo.
Step 3 : Convert the transactions , configurations into structure type,
Step 4 : Drive the read data phase from the bfm.
Step 5 : Convert the structure type into the transaction type, and get the read address and read
data from the fifo and Combine the read address and read data into Packet.
Step 6 :Then Put back the semaphore key.

`

 Fig 3.39 Flowchart for slave driver proxy read task using semaphore

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 63

https://app.diagrams.net/?page-id=VYUcgK6k2cy-La7YqFPT&scale=auto#G1tBd4Etm9m-seX91dvnqVszNdsfiOum_2

 Fig 3.40 Slave driver proxy read_task

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 64

https://app.diagrams.net/?page-id=aJLMZOZx2QTRQaD2uatH&scale=auto#G1qJ_NRV085Jlv6Pm4JcxvZcKRo96-T8xE

 Fig 3.41 AXI4 slave driver proxy Flow chart for write and read

3.2.20 AXI Slave Monitor Proxy

Axi4 slave monitor proxy component is a class extending uvm_monitor. It gets the Axi4
slave agent config handle and based on the configurations we will sample the signals. It
declares and creates the axi4 slave analysis port to send the sampled data. The axi4 slave
monitor proxy will get the sampled data from axi4 master monitor bfm as shown in figure
3.42.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 65

https://app.diagrams.net/?page-id=Iuy8eNDSE7DWYphGerEB&scale=auto#G1OddTb772tjuTIWGcXiOB3b4WqBbLz2l7

Fig 3.42 flowchart of slave_monitor_proxy

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 66

https://app.diagrams.net/?page-id=wIguMtNdrgXhtNu1_bu3&scale=auto#G1NfI3ewI06FLfLQLuAzPM_J894vBvUSAv

The connections made between the slave monitor proxy and scoreboard are shown in the
above fig.3.33.

The data sampled in the slave monitor proxy from slave monitor bfm will be combined and
sent to scoreboard by using the analysis port. For getting five channels of data into the
scoreboard we use five fifos to store the data. The axi4_slave_write_address_analysis_fifo
gets the write address and stores it, axi4_slave_write_data_analysis_fifo gets write data and
stores it, axi4_slave_write_response_analysis_fifo and stores response in it. Similarly the
fifos store the read address in axi4_slave_read_address_analysis_fifo and read data in
axi4_slave_read_data_analysis_fifo respectively. The data received in the fifos are called
using the get method and call their respective tasks which compares the master and slave data
as shown in fig.3.34. We use semaphore to synchronization the tasks. All the tasks must be
done concurrently to get data in upcoming channels as shown in fig 3.34.

3.2.21 UVM Verbosity

There are predefined UVM verbosity settings built into UVM (and OVM). These settings are
included in the UVM src/uvm_object_globals.svh file and the settings are part of the
enumerated uvm_verbosity type definition. The settings actually have integer values that
increment by 100 as shown below table 3.2

Table 3.2 UVM verbosity Priorities

Verbosity Default Value

UVM_NONE 0(Highest Priority)

UVM_LOW 100

UVM_MEDIUM 200

UVM_HIGH 300

UVM_FULL 400

UVM_DEBUG 500(Lowest Priority)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 67

Chapter 4
Directory Structure

4.1.Package Content
The package structure diagram navigates users to find out the file locations, where it is
located and which folder as shown in fig. 4.1

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 68

Fig. 4.1. Package Structure of AXI4_AVIP

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 69

https://app.diagrams.net/?page-id=430mQW0QvbOw86zpu_Gc&scale=auto#G1XQOUjVNyd7JrCrkp4DNAT0uxALrrpwiS

Table 4.1 Directory Path

 Directory Description

axi4_avip/doc contains test bench architecture and components
description and verification plan and assertion plan and
coverage plan.

axi4_avip/sim Contains all simulating tools and axi4_compile.f file
which contain all directories and compiling files

axi4_avip/src/globals Contains global package parameters(names,modes)

axi4_avip/src/hvl_top Contain all tb components folder (master,slave,enc,test)

axi4_avip/src/hdl_top Contain all bfm files and assertions files

axi4_avip/src/hdl_top/master_agent_bfm Contain master agent, driver and monitor bfm files

axi4_avip/src/hdl_top/slave_agent_bfm Contains slave agent, driver and monitor bfm files

axi4_avip/src/hdl_top/axi4_interface Contain axi4 interface file

axi4_avip/src/hvl_top/test Contains all test cases files

axi4_avip/src/hvl_top/test/sequences/master_sequences Contain all master sequence test files

axi4_avip/src/hvl_top/test/sequences/slave_sequences Contain all slave sequence test files

axi4_avip/src/hvl_top/test/sequences/virtual_sequences Contain all virtual sequence test files

axi4_avip/src/hvl_top/env Contain env config files and score board file

axi4_avip/src/hvl_top/env/virtual_sequencer Contain virtual sequencer file

axi4_avip/src/hvl_top/master Contain master agent files , coverage file

axi4_avip/src/hvl_top/slave Contain slave agent files , coverage file

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 70

Chapter 5

Configuration

5.1 Global package variables
The global variables declared in the global package file are given in this chapter.

Table 5.1 Global package variables

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 71

Name Type Description

awburst_e bit Used to declare the enum type of write burst type
WRITE_FIXED = 2’b00
WRITE_INCR = 2’b01
WRITE_WRAP = 2’b10
WRITE_RESERVED = 2’b11

arburst_e bit Used to declare the enum type of read burst type
READ_FIXED = 2’b00
READ_INCR = 2’b01
READ_WRAP = 2’b10
READ_RESERVED = 2’b11

awsize_e bit Used to declare the enum type for write transfer size
WRITE_1_BYTE = 3’b000
WRITE_2_BYTES = 3’b001
WRITE_4_BYTES = 3’b010
WRITE_8_BYTES = 3’b011
WRITE_16_BYTES = 3’b100
WRITE_32_BYTES = 3’b101
WRITE_64_BYTES = 3’b110
WRITE_128_BYTES = 3’b111

arsize_e bit Used to declare the enum type for read transfer size
READ_1_BYTE = 3’b000
READ_2_BYTES = 3’b001
READ_4_BYTES = 3’b010
READ_8_BYTES = 3’b011
READ_16_BYTES = 3’b100
READ_32_BYTES = 3’b101
READ_64_BYTES = 3’b110
READ_128_BYTES = 3’b111

awlock_e bit Used to declare the enum type for write lock access
WRITE_NORMAL_ACCESS = 1’b0
WRITE_EXCLUSIVE_ACCESS = 1’b1

arlock_e bit Used to declare the enum type for read lock access
READ_NORMAL_ACCESS = 1’b0
READ_EXCLUSIVE_ACCESS = 1’b1

awcache_e bit Used to declare the enum type for write cache access
WRITE_BUFFERABLE
WRITE_MODIFIABLE
WRITE_OTHER_ALLOCATE
WRITE_ALLOCATE

arcache_e bit Used to declare the enum type for read cache access
READ_BUFFERABLE
READ_MODIFIABLE
READ_OTHER_ALLOCATE
READ_ALLOCATE

awprot_e bit Used to represent the protection type for transaction
WRITE_NORMAL_SECURE_DATA = 3'b000
WRITE_NORMAL_SECURE_INSTRUCTION = 3'b001
WRITE_NORMAL_NONSECURE_DATA = 3'b010
WRITE_NORMAL_NONSECURE_INSTRUCTION = 3'b011
WRITE_PRIVILEGED_SECURE_DATA = 3'b100
WRITE_PRIVILEGED_SECURE_INSTRUCTION = 3'b101

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 72

arprot_e bit Used to represent the protection type for transaction
READ_NORMAL_SECURE_DATA = 3'b000
READ_NORMAL_SECURE_INSTRUCTION = 3'b001
READ_NORMAL_NONSECURE_DATA = 3'b010
READ_NORMAL_NONSECURE_INSTRUCTION = 3'b011
READ_PRIVILEGED_SECURE_DATA = 3'b100
READ_PRIVILEGED_SECURE_INSTRUCTION = 3'b101

bresp_e bit Represents slave error signals for write channel
WRITE_OKAY = 2’b00
WRITE_EXOKAY = 2’b01
WRITE_SLVERR = 2’b10
WRITE_DECERR = 2’b11

rresp_e bit Represents slave error signals for read channel
READ_OKAY = 2’b00
READ_EXOKAY = 2’b01
READ_SLVERR = 2’b10
READ_DECERR = 2’b11

endian_e bit LITTLE_ENDIAN = 1’b0 : lsb bit will store in first address location
BIG_ENDIAN = 1’b1 : msb bit will store in first address location

tx_type_e bit WRITE = 1’b1 : write transfer happens
READ = 1’b0 : read transfer happens

transfer_type_e bit Used to determine the transfer type
BLOCKING_WRITE = 2’b00
BLOCKING_READ = 2’b01
NON_BLOCKING_WRITE = 2’b10
NON_BLOCKING_READ = 2’b11

Configuration used

1.​ Env configuration
2.​ Master Agent configuration
3.​ Slave Agent configuration

5.2 Master agent configuration

Table 5.2 Master_agent_config

Name Type Default value Description

is_active enum UVM_ACTIVE It will be used for configuring an agent as an active agent means it
has sequencer, driver and monitor or passive agent which has
monitor only.

has_coverage integer ‘d1 Used for enabling the master agent coverage

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 73

5.3 Slave agent configuration

Table 5.3 Slave_agent_config

Name Type Default value Description

is_active enum UVM_ACTIVE It will be used for configuring agent as an active agent means
it has sequencer,driver and monitor and if it’s a passive agent
then it will have only monitor

has_coverage integer ‘d1 Used for enabling the slave agent coverage.

5.4 Environment configuration

Table 5.4 Env_config

Name Type Default value Description

has_scoreboard integer 1 Enables the scoreboard, it usually receives the transaction level objects
via TLM ANALYSIS PORT.

has_virtual_sqr integer 1 Enables the virtual sequencer which has master and slave sequencer

no_of_slaves integer ‘h1 Number of slaves connected to the axi interface

no_of_masters integer ‘h1 Number of masters connected to the axi interface

5.5 Memory Mapping

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk to a
range of addresses within an application's address space.

In AXI, the memory mapping means that the slave’s address ranges are stored in the master’s
associative arrays so that master has access to each slave’s address range.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 74

Fig. 5.5.1: Memory mapping example

Memory mapping in AXI

An example of memory mapping is as shown in fig. 1. Initially in global package, the
memory is taken as 4KB, i.e., the slave memory size is taken as 12, because
(2**ADDRESS_DEPTH = MEMORY_SIZE) i.e., (2**12 = 4096) as shown in fig. 5.5.2.

Each Slave memory is given a gap of 2 locations, so that each memory mapping can be
differentiated easily as shown in fig. 5.5.2.

Fig. 5.5.2: Global parameter declaration

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 75

An associative array is used to store the max and min address ranges of every slave in
master agent configuration, where [int] is the index type as shown in fig. 5.5.3.

Fig.5.5.3: Associative array declaration

In master agent configuration, two functions are written so that the value obtained will be
stored in the master array as shown in fig. 5.5.4.

Fig.5.5.4: Functions for memory mapping for max and min value

The memory mapping is done in base_test as shown in fig. 5. In a
setup_axi4_master_agent_config(), initially, we declare 2 local variables to store the min and
max address used for each iteration as shown in fig. 5.5.5.

Fig 5.5.5 Local variable declaration in function

The function setup_axi4_master_agent_cfg will start pushing the maximum and minimum
address ranges to the respective associative arrays by adding a memory gap of 4 and making
sure that start address is mod of 4 as shown in fig. 5.5.6.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 76

Fig 5.5.6: Memory mapping procedure in master agent configuration

In slave agent configuration, the slave max and min address range is declared as shown in
fig. 5.5.7. Created the slave memory of type associative array so that each salve can store the
data received from master with the respective address as key.

Fig 5.5.7: Declaration of slave max and min address range

Similarly for Slave, the mapping is done as shown in fig. 5.5.8. The same index value is
mapped for the slave memory, so that the slave stores the data in the same address range for
memory. Each slave’s minimum and maximum addressess are sent to the respective slave
agent configurations from the stored maximum and minimum address ranges in the master
agent configuration.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 77

Fig.5.5.8: Memory mapping procedure in slave agent configuration

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 78

Chapter 6

Verification Plan

6.1 Verification plan

Verification Plan Link:

axi4 avip vplan

Verification plan is an important step in Verification flow; it defines the plan of an entire
project and verifies the different scenarios to achieve the test plan.

A Verification plan defines what needs to be verified in Design under test(DUT) and then
drives the verification strategy. As an example, the verification plan may define the features
that a system has and these may get translated into the coverage metrics that are set.

Refer the below link for AXI Specifications:

AXI4 Specifications

AXI4 Specifications(Arm)

AXI4 Write Channel Transfers

1.​ Write data Transfers
2.​ Burst Type Transfers

1)​ Fixed
2)​ INCR
3)​ WRAP

3.​ Write Response
4.​ Locked Transfers
5.​ Quality of Service

AXI4 Read Channel Transfers

1.​ Read data Transfers
2.​ Burst Type Transfers

1)​ FIXED
2)​ INCR
3)​ WRAP

3.​ Read Response

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 79

https://docs.google.com/spreadsheets/d/e/2PACX-1vQW5eTKDINey6Rduk-SunLhwWbtQ29eamfcuh92Qnpq9cuqABCV7tNDEACZqFdH9ke4Gl3YvH1B9mWz/pubhtml?gid=0&single=true
http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification

4.​ Locked Transfers
5.​ Quality of Service

Outstanding Addresses:

When the master sends the next transaction without waiting to complete the previous transaction.

Addressing Types

1)​ Aligned
2)​ Unaligned

Memory Access

1)​ Big Endian
2)​ Little Endian
3)​ Byte Invariance

TO_DO:

Out of order:

Response doesn't need to come in the same order as the master sent, only if id is different to the
transactions(based on different ID's to the same slave)

Memory Access

1)​ Big Endian
2)​ Byte Invariance

Protection

1)​ Un Privilege/Privilege
2)​ Secure/Non Secure
3)​ Data/Instruction

Cache Memory Access

1)​ Bufferable
2)​ Modifiable
3)​ Write Allocate
4)​ Read Allocate

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 80

6.2 Template of Verification Plan

Verification Plan Link:

axi4 avip vplan

In the below Figure

Section A shows the S.No

Section B shows the Features

Section C shows the Sub Features

 Fig 6.2.1 Verification plan Template

Section D represents the Description

Fig 6.2.2 Verification plan Section D is Description for tests

Section G and H shows the Test Cases names and Status for heading(Directed Test cases)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 81

https://docs.google.com/spreadsheets/d/e/2PACX-1vQW5eTKDINey6Rduk-SunLhwWbtQ29eamfcuh92Qnpq9cuqABCV7tNDEACZqFdH9ke4Gl3YvH1B9mWz/pubhtml?gid=0&single=true

Fig 6.2.3 Verification plan Section G and H is for Test Names and Status

6.3 Sections for different test Scenarios

Creating the different Sections for different test cases to be developed in the point of
implementing the test scenarios

 6.3.1 Directed test

These directed tests provide explicit stimulus to the design inputs, run the design in
simulation, and check the behaviour of the design against expected results.

 Directed test names for Blocking:

This tests describes the different combinations of number of bits transfer for Blocking

Table 6.1 : Directed test names for Blocking Transfers

S.NO Test names Description

1 axi4_blocking_8b_write_read_test Checking the 8 bit transfer

2 axi4_blocking_16b_write_read_test Checking the 16bit transfer

3 axi4_blocking_32b_write_read_test Checking the 24bit transfer

4 axi4_blocking_64b_write_read_test Checking the 32 bit transfers

5 axi4_blocking_fixed_burst_write_read_test Checking for fixed burst transfer

6 axi4_blocking_incr_burst_write_read_test Checking for incr burst transfer

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 82

7 axi4_blocking_wrap_burst_write_read_test Checking for wrap burst transfer

8 axi4_blocking_slave_error_write_read_test Checking for slave error response

9 axi4_blocking_unaligned_addr_write_read_test Checking for unaligned address

Directed test names for Non Blocking:

This tests describes the different combinations of number of bits transfer for Non Blocking

 Table 6.2 : Directed test names for Non Blocking Transfers

S.NO Test names Description

1 axi4_non_blocking_8b_write_read_test Checking the 8 bit transfer

2 axi4_non_blocking_16b_write_read_test Checking the 16bit transfer

3 axi4_non_blocking_32b_write_read_test Checking the 24bit transfer

4 axi4_non_blocking_64b_write_read_test Checking the 32 bit transfers

5 axi4_non_blocking_fixed_burst_write_read_test Checking for fixed burst transfer

6 axi4_non_blocking_incr_burst_write_read_test Checking for incr burst transfer

7 axi4_non_blocking_wrap_burst_write_read_test Checking for wrap burst transfer

8 axi4_non_blocking_slave_error_write_read_test Checking for slave error response

9 axi4_non_blocking_okay_response_write_read_test Checking fo Okay response of write read
transfers

10 axi4_non_blocking_unaligned_addr_write_read_test Checking for unaligned address

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 83

6.3.2 Random test

Though a random test case is powerful in terms of finding bugs faster than the directed one,
usually we prefer random test cases for the module and sub-system level verification and
mostly we prefer directed test cases for the SoC level verification. .

 Purely random test generations are not very useful because of the following two reasons-

a)​ Generated scenarios may violate the assumptions, under which the design was
constructed

b)​ Many of the scenarios may not be interesting, thus wasting valuable simulation time,

hence random stimulus with the constraints..

Random test name

This tests describes the random write read transfers for Blocking

Table 6.3 : Random test name for Blocking Transfers

S.NO Test names Description

1 axi4_blocking_write_read_rand_test Checking the random write read transfers

 This tests describes the random write read transfers for Non Blocking

Table 6.4 : Random test name for Non Blocking Transfers

S.NO Test names Description

1 axi4_non_blocking_write_read_rand_test Checking the random write read transfers

6.3.3 Cross test

The Cross test describes the creation of specific test cases required to hit the crosses and
cover points defined in the functional coverage and running them with multiple seeds with
functional coverage.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 84

This tests describes the cross test for Axlength, Axsize and Axburst write read transfers for
Non Blocking

Table 6.5 : Cross test name for Non Blocking Transfers

S.NO Test names Description

1 axi4_non_blocking_cross_write_read_test Checking the cross of AxLength X Axburst and
Axsize of write read transfers

For more information about Verification plan refer below link

 axi4 avip vplan

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 85

https://docs.google.com/spreadsheets/d/e/2PACX-1vQW5eTKDINey6Rduk-SunLhwWbtQ29eamfcuh92Qnpq9cuqABCV7tNDEACZqFdH9ke4Gl3YvH1B9mWz/pubhtml?gid=0&single=true

Chapter 7

Assertion Plan

7.1 Assertion Plan overview
Assertion plan is an important step in verification flow, which validates the behaviour of
design at every instance.

7.1.1 What are assertions?​ ​ ​ ​ ​

●​ An assertion specifies the behaviour of the system.
●​ Piece of verification code that monitors a design implementation for compliance with

the specifications
●​ Directive to a verification tool that the tool should attempt to prove/assume/count a

given property using formal methods

7.1.2 Why do we use it?

●​ Assertions are primarily used to validate the behaviour of a design.
●​ Assertions can be used to provide functional coverage and to flag that input stimulus,

which is used for validation, does not conform to assumed requirements.​
●​ Assertions are used to find more bugs and source the bugs faster.

7.1.3 Benefits of Assertions

●​ Improves observability of the design.
●​ Improves debugging of the design.
●​ Improves documentation of the design.

7.2 Template of Assertion Plan

Template for Assertion plan is done in an excel sheet and refer to link below:
 axi4_avip_assertion_plan

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 86

https://docs.google.com/spreadsheets/d/1MUY4_IZhgIvZxfI2srA2Z8aqdqH6bn-JW2aci0laWoQ/edit#gid=0

7.3 Assertion Condition

Fig. 7.1 Assertion code for stable signals check

Property AXI_WA_STABLE_SIGNALS_CHECK is evaluated as follows:

●​ Initially it will check for posedge of aclk and aresetn should be high.
●​ When awvalid is high and awready is low ,at the same cycle it will check for

awid,awaddr,awlen,awsize,awburst,awlock,awcache and awprot signal should be
stable. Then property is true.

●​ Otherwise the property will fail.

7.3.2. AXI_WA_UNKNOWN_SIGNALS_CHECK

A value of X on signals is not permitted when AWVALID is high as shown in fig. 7.2

Fig. 7.2 Assertion code for unknown signals check

Property AXI_WA_UNKNOWN_SIGNALS_CHECK is evaluated as follows:

●​ Initially it will check for posedge of aclk and aresetn should be high.
●​ When awvalid is high,at the same cycle it will check for

awid,awaddr,awlen,awsize,awburst,awlock,awcache and awprot signal should be
unknown. Then property is true.

●​ Otherwise the property will fail.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 87

7.3.3. AXI_WA_VALID_STABLE_CHECK

When AWVALID is asserted, then it must remain asserted until AWREADY is high as
shown in fig. 7.3

Fig. 7.3 Assertion code for valid stable check

Property AXI_WA_VALID_STABLE_CHECK is evaluated as follows:

●​ Initially it will check for posedge of aclk and aresetn should be high.
●​ When awvalid is changed from zero to high,at the same cycle it will check for

awvalid should be high until awready signal is high. Then property is true.
●​ Otherwise the property will fail.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 88

Chapter 8
Coverage

8.1 Functional Coverage

●​ Functional coverage is the coverage data generated from the user defined functional
coverage model and assertions usually written in System Verilog During simulation,
the simulator generates functional coverage based on the stimulus. Looking at the
functional coverage data, one can identify the portions of the DUT [Features] verified.
Also, it helps us to target the DUT features that are unverified.

●​ The reason for switching to the functional coverage is that we can create the bins
manually as per our requirement while in the code coverage it is generated by the
system by itself.

8.2 Uvm_Subscriber

●​ This class provides an analysis export for receiving transactions from a connected
analysis export. Making such a connection "subscribes" this component to any
transactions emitted by the connected analysis port. Subtypes of this class must define
the write method to process the incoming transactions. This class is particularly useful
when designing a coverage collector that attaches to a monitor.

Figure8.1 . Uvm_subscriber

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 89

Figure8.2 . Monitor and coverage connection

8.2.1 Analysis export

This export provides access to the write method, which derived subscribers must implement.

8.2.2 Write function

The write function is to process the incoming transactions.

Figure 8.3. Write function

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 90

8.3 Covergroup

Figure 8.4. Covergroup
The above red mark points in Figure 8.3 is explained below :-

1.​ With function sample: - It is used to pass a variable to covergroup.
2.​ Parameter based on which the coverpoint is generated.
3. Per Instance Coverage - 'option.per_instance'​
In your test bench, you might have instantiated coverage_group multiple times. By default,
System Verilog collects all the coverage data from all the instances. You might have more
than one generator and they might generate different streams of transaction. In this case you
may want to see separate reports. Using this option, you can keep track of coverage for each
instance.

3.1. option.per_instance=1 Each instance contributes to the overall coverage
information for the covergroup type. When true, coverage information for this
covergroup instance shall be saved in the coverage database and included in the
coverage report.

Figure 8.5. option.per_instance

4. Cover Group Comment - 'option.comment’​
You can add a comment in to coverage report to make them easier while analysing:​

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 91

​
​ ​ ​ ​ ​ Figure 8.6 option.comment​
For example, you could see the usage of 'option.comment' feature. This way you can make
the coverage group easier for the analysis.​

8.4 Coverpoints
There we are created the bins based on the write_address_length, write_address_size,
write_address_burst

Figure 8.7. Coverpoint

8.5 Illegal bins

illegal_bins illegal_bin = {0};

Illegal bins are used when we don't want to have the particular value eg - we don't want to
have the baud_rate_divisior to be zero so we create the illegal bin for it.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 92

8.6 Creation of the covergroup

Figure 8.8. Creation of covergroup
In this function the creation of the covergroup is done with the new as shown in the figure
above.

8.7 Sampling of the covergroup
In this the sampling of the covergroup is done in the write function as shown below

Figure 8.9. Sampling of the covergroup

8.8 Checking for the coverage
1.​ Make Compile
2.​ Make simulate
3.​ Open the log file

Figure 8.10. Log file

4.​ Search for the coverage (There it will be the full coverage) in the log file.

5.​ To check the individual coverage bins hit open the coverage report as shown :-

Figure 8.11. Coverage report
Then new html window will open

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 93

Figure 8.12. HTML window showing all coverage
Here click on the covergroup there we can see the per instance created and inside that each
coverpoint with bins is present there.

Figure 8.13. All coverpoints present in the Covergroup

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 94

Figure 8.14. Individual Coverpoint Hit

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 95

Chapter 9
Test Cases

9.1 Test Flow
In the test, there is virtual sequence and in virtual sequence, sequences are there,
sequence_item get started in sequences, sequences will start in virtual sequence and virtual
sequence will start in Test

 Fig 9.1 Test flow

9.2 AXI4 Test Cases Flow Chart

 Fig 9.2 AXI4 test cases flow chart

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 96

https://app.diagrams.net/?page-id=dnmm31B8M5x43_O-oxbx&scale=auto#G14efqYN0hjCcjijkMFQeD24eAYpKeaZi7
https://app.diagrams.net/?page-id=h55yXCwGjkN_euucidk-&scale=auto#G1WRya1lOY8w-rKmLDTLdiTmJWGDVVGu__

9.3 Transaction
Two types of transactions are there

➢​ Master_tx

➢​ Slave_tx

9.3.1 Master_tx

➢​ Master_tx class is extended from the uvm_sequence_item holds the data items

required to drive stimulus to dut

➢​ Declared all the variables(of all the 5 channels, like write address, write data, write
response, read address, read data)

Write address channel

➢​ Constraint declared for awburst to get burst type between fixed, incr and wrap types.

➢​ Constraint declared for awlen to restrict the transfer size.

➢​ Constraint declared for awlen to get multiples of 2 in wrap type burst

➢​ Constraint declared for awlock to get locked transfers

➢​ Constraint declared for awburst to select the type of burst

➢​ Constraint declared for awsize to get the size of transfer

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 97

 Fig 9.3 Constraint for write address

 Write data channel

➢​ Constraint declared for wdata to restrict data based on awlen

➢​ Constraint declared for no of wait states to restrict the wait states for response

 Fig 9.4 Constraint for write data

Read address channels

➢​ Constraint declared for arburst for restricting burst type between incr, wrap and fixed

➢​ Constraint declared for arlen to restrict the transfer size.

➢​ Constraint declared for arlen to get multiples of 2 in wrap type burst

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 98

➢​ Constraint declared for arlock to get locked transfers

➢​ Constraint declared for arburst to select the type of burst

➢​ Constraint declared for arsize to get the size of transfer

 Fig 9.5 Constraint for read address

Memory constraint

➢​ Adding constraint for selecting the endianness

 Fig 9.6 Constraint for memory

9.3.2 Slave_tx

➢​ Slave_tx class is extended from the uvm_sequence_item holds the data items

required to drive stimulus to dut

➢​ Declared all the variables(of all the 5 channels, like write address, write data, write
response, read address, read data)

➢​ Constraint declared for ardata to restrict the data based on the arlen

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​ 99

➢​ Constraint declared for the bresp to select the type of write response

➢​ Constraint declared for the rresp to select the type of write response

➢​ Constraint to randomise the wait state in between 0 to 3

 Fig 9.7 Constraints for read data response and wait states

Table 9.1 Describing constraint in master and slave transactions

Constraint

 Description

awburst_c1 Constraint declared for awburst to get burst type between fixed, incr and wrap types.

awlength_c2 Constraint declared for awlen to restrict the transfer size.

awlength_c3 Constraint declared for awlen to get multiples of 2 in wrap type burst

awlock_c4 Constraint declared for awlock to get locked transfers

awburst_c5 Constraint declared for awburst to select the type of burst

awsize_c6 Constraint declared for awsize to get the size of transfer

wdata_c1 Constraint declared for wdata to restrict data based on awlen

no_of_wait_sta
tes_c3

esponse

arburst_c1 Constraint declared for arburst for restricting burst type between incr, wrap and fixed

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
100

arlength_c2 Constraint declared for arlen to restrict the transfer size.

arlength_c3 Constraint declared for arlen to get multiples of 2 in wrap type burst

arlock_c4 Constraint declared for arlock to get locked transfers

arburst_c5 Constraint declared for arburst to select the type of burst

endian_c1 Adding constraint for selecting the endianness

rdata_c1 Constraint declared for ardata to restrict the data based on the arlen

bresp_c1 Constraint declared for the bresp to select the type of write response

rresp_c1 Constraint declared for the rresp to select the type of write response

wait_state_c1 Constraint to randomise the wait state in between 0 to 3

 Master tx do_copy,do_compare and do_print methods

➢​ Written functions for do_copy, do_compare, do_print methods, $casting is used to

copy the data member values and compare the data member values and by using a

printer , printing the data values.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
101

 Fig 9.8 do_copy method

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
102

​ ​ ​ ​ ​ Fig 9.9 do_compare method

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
103

 Fig 9.10 do_print method

Slave tx do_copy,do_compare and do_print methods

➢​ Written functions for do_copy, do_compare, do_print methods, $casting is used to

copy the data member values and compare the data member values and by using a

printer , printing the data values.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
104

​ ​ ​ Fig 9.11: slave_tx do_copy method

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
105

​ ​ ​ ​ Fig 9.12 slave_tx do_compare method

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
106

​ ​ ​ Fig 9.13 slave_tx do_print method

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
107

9.4 Sequences

A UVM Sequence is an object that contains a behaviour for generating stimulus. A sequence

generates a series of sequence_item’s and sends it to the driver via sequencer, Sequence is

written by extending the uvm_sequence.

9.4.1 Methods

 Table 9.2. Sequence methods

 Method Description

new Creates and initialises a new sequence object

start_item This method will send the request item to the sequencer, which will forward it to the driver

req.randomize() Generate the transaction(seq_item).

finish_item Wait for acknowledgement or response

 Fig 9.14 Flow chart for sequence methods

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
108

https://app.diagrams.net/?page-id=S8NSsikoFkYFWgU_b_Dg&scale=auto#G1THkiWYGkB8r4PCZdx4fXA2T8loKfydFl

Table 9.3. Describing master sequences for Blocking and Non Blocking

 Sections Master sequences Description

base_seq axi4_master_base_seq Base class is extended from uvm_ sequence and
parameterized with transaction (axi4_master_ tx)

write axi4_master_write_seq Extended from master_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type, tx_type

read axi4_master_read_seq

Extended from master_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, tx_type

Blocking base_seq axi4_master_bk_base_seq

Base class is extended from uvm_ sequence and
parameterized with transaction (axi4_master_
tx)and in task called sequence body method giving
the req with
transfer_types(BLOCKING_WRITE,BLOCKING
_READ)

Blocking write axi4_master_bk_write_seq

Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(transfer_type=BLOCKING_WRITE)

Blocking read axi4_master_bk_read_seq

Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize,
arburst,tx_type,transfer_type.(transfer_type=BLOC
KING_READ)

Blocking write data
transfer

axi4_master_bk_write_8b_transfer_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awise is WRITE_1_BYTE for 8 bits)

 axi4_master_bk_write_16b_transfer_seq

Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awise is WRITE_2_BYTE for 16 bits)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
109

 axi4_master_bk_write_32b_transfer_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awise is WRITE_4_BYTE for 32 bits)

 axi4_master_bk_write_64b_transfer_seq

Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awise is WRITE_8_BYTE for 64 bits)

Blocking read data
transfer

axi4_master_bk_read_8b_transfer_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_1_BYTE
for 8 bits)

 axi4_master_bk_read_16b_transfer_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_2_BYTE
for 8 bits)

 axi4_master_bk_read_32b_transfer_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_4_BYTE
for 8 bits)

 axi4_master_bk_read_64b_transfer_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_8_BYTE
for 8 bits)

Blocking write burst
transfers

axi4_master_bk_write_incr_burst_seq

Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awburst is WRITE_INCR)

 axi4_master_bk_write_wrap_burst_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awburst is WRITE_WRAP)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
110

Blocking read burst
transfers

axi4_master_bk_read_incr_burst_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(aburst is READ_INCR)

 axi4_master_bk_read_wrap_burst_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(aburst is READ_WRAP)

Blocking write
responses

axi4_master_bk_write_okay_resp_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst,
tx_type,transfer_type.

 axi4_master_bk_write_exokay_resp_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, tx_type,transfer_type

Blocking read response axi4_master_bk_read_okay_resp_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, tx_type,transfer_type

 axi4_master_bk_read_exokay_resp_seq Extended from master_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, tx_type,transfer_type

non_blocking base_seq axi4_master_nbk_base_seq

Base class is extended from uvm_ sequence and
parameterized with transaction (axi4_master_
tx)and in task called sequence body method giving
the req with
transfer_types(NON_BLOCKING_WRITE,NON_
BLOCKING_READ)

Non_blocking write axi4_master_nbk_write_seq

Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(transfer_type=NON_BLOCKING_WRIT
E)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
111

Non_blocking read axi4_master_nbk_read_seq

Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, transfer type,
tx_type(transfer_type=NON_BLOCKING_READ)

non_blocking write data
transfer

axi4_master_nbk_write_8b_transfer_seq

Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst,
tx_type,transfer_type.(awsize is WRITE_1_BYTE
for 8 bits)

 axi4_master_nbk_write_32b_transfer_seq

Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst,
tx_type,transfer_type.(awsize is WRITE_4_BYTE
for 8 bits)

 axi4_master_nbk_write_64b_transfer_seq

Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst,
tx_type,transfer_type.(awsize is WRITE_8_BYTE
for 8 bits)

 axi4_master_nbk_write_16b_transfer_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst,
tx_type,transfer_type.(awsize is WRITE_2_BYTE
for 8 bits)

non_blocking read data
transfer

axi4_master_nbk_read_8b_transfer_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_1_BYTE
for 8 bits)

 axi4_master_nbk_read_16b_transfer_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_2_BYTE
for 8 bits)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
112

 axi4_master_nbk_read_32b_transfer_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_4_BYTE
for 8 bits)

 axi4_master_nbk_read_64b_transfer_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst,
tx_type,transfer_type.(arsize is READ_8_BYTE
for 8 bits)

non_blocking write
burst transfers

axi4_master_nbk_write_incr_burst_seq

Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awburst is WRITE_INCR)

 axi4_master_nbk_write_wrap_burst_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, transfer type,
tx_type(awburst is WRITE_WRAP)

non_blocking read burst
transfers

axi4_master_nbk_read_incr_burst_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, transfer type,
tx_type(awburst is READ_INCR)

 axi4_master_nbk_read_wrap_burst_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, transfer type,
tx_type(awburst is READ_WRAP)

non_blocking write
responses

axi4_master_nbk_write_okay_resp_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, tx_type,transfer_type

 axi4_master_nbk_write_exokay_resp_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the awsize, awburst, tx_type,transfer_type

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
113

non_blocking read
responses

axi4_master_nbk_read_okay_resp_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, tx_type,transfer_type

 axi4_master_nbk_read_exokay_resp_seq Extended from master_nbk_base_seq. Based on a
request from the driver, the task will drive the
transactions. In between start_ item and finish_
item using inline constraint and randomising the
req with the arsize, arburst, tx_type,transfer_type

Table 9.4 : Describing slave sequences for Blocking and Non Blocking

 Sections Slave sequences Description

base_seq axi4_slave_base_seq Base class is extended from uvm_ sequence and
parameterized with transaction (axi4_slave_ tx)

write axi4_slave_write_seq Extended from slave_base_seq. Based on a request
from the driver, the task will drive the transactions.
In between start_ item and finish_ item using inline
constraint and randomising the req with the bresp.

read axi4_slave_read_seq

Extended from slave_base_seq. Based on a request
from the driver, the task will drive the transactions.
In between start_ item and finish_ item using inline
constraint and randomising the req with the rresp

Blocking base_seq axi4_slave_bk_base_seq

Base class is extended from uvm_ sequence and
parameterized with transaction (axi4_slave_ tx)and
in task called sequence body method giving the req
with the
transfer_types(BLOCKING_WRITE,BLOCKING
_READ)

Blocking write axi4_slave_bk_write_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

Blocking read axi4_slave_bk_read_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item randomising the req.

Blocking write data
transfer

axi4_slave_bk_write_8b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
114

 axi4_slave_bk_write_16b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

 axi4_slave_bk_write_32b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

 axi4_slave_bk_write_64b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

Blocking read data
transfer

axi4_slave_bk_read_8b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_1_BYTE)

 axi4_slave_bk_read_16b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_2_BYTE)

 axi4_slave_bk_read_32b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_4_BYTE)

 axi4_slave_bk_read_64b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_8_BYTE)

Blocking write burst
transfers

axi4_slave_bk_write_incr_burst_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
115

 axi4_slave_bk_write_wrap_burst_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

Blocking read burst
transfers

axi4_slave_bk_read_incr_burst_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item randomising the req.

 axi4_slave_bk_read_wrap_burst_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item randomising the req.

Blocking write
responses

axi4_slave_bk_write_okay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

 axi4_slave_bk_write_exokay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_WRITE. In between start_ item and
finish_ item randomising the req.

Blocking read response axi4_slave_bk_read_okay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item randomising the req.

 axi4_slave_bk_read_exokay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item randomising the req.

non_blocking base_seq axi4_slave_nbk_base_seq

Base class is extended from uvm_ sequence and
parameterized with transaction (axi4_slave_ tx)

Non_blocking write axi4_slave_nbk_write_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

Non_blocking read axi4_slave_nbk_read_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_READ. In between start_ item
and finish_ item randomising the req.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
116

non_blocking write data
transfer

axi4_slave_nbk_write_8b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

 axi4_slave_nbk_write_32b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

 axi4_slave_nbk_write_64b_transfer_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

 axi4_slave_nbk_write_16b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

non_blocking read data
transfer

axi4_slave_nbk_read_8b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_1_BYTE)

 axi4_slave_nbk_read_16b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_2_BYTE)

 axi4_slave_nbk_read_32b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_4_BYTE)

 axi4_slave_nbk_read_64b_transfer_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
BLOCKING_READ. In between start_ item and
finish_ item using inline constraint and
randomising the req with the arsize, arburst,
transfer type, tx_type (arsize is READ_8_BYTE)

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
117

non_blocking write
burst transfers

axi4_slave_nbk_write_incr_burst_seq

Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

 axi4_slave_nbk_write_wrap_burst_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

non_blocking read burst
transfers

axi4_slave_nbk_read_incr_burst_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_READ. In between start_ item
and finish_ item randomising the req.

 axi4_slave_nbk_read_wrap_burst_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_READ. In between start_ item
and finish_ item randomising the req.

non_blocking write
responses

axi4_slave_nbk_write_okay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

 axi4_slave_nbk_write_exokay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_WRITE. In between start_
item and finish_ item randomising the req.

non_blocking read
responses

axi4_slave_nbk_read_okay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_READ. In between start_ item
and finish_ item randomising the req.

 axi4_slave_nbk_read_exokay_resp_seq Extended from slave_bk_base_seq. Based on a
request from the driver, the task will drive the
transactions and give the req with transfer_type as
NON_BLOCKING_READ. In between start_ item
and finish_ item randomising the req.

 In master_seq body creating req and start item will start seq and randomising the req with inline

 constraint and selecting slave then print req followed by finish item

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
118

Fig 9.15 Master blocking seq body method

Fig 9.16 Master non_blocking sequence

In slave_seq body creating req and start item will start seq and randomising the req with
inline constraint and print req followed by finish item

Fig 9.17 Slave blocking seq body method

Fig 9.18 Slave non blocking seq body method

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
119

9.5 Virtual sequences

A virtual sequence is a container to start multiple sequences on different sequencers in the
environment. This virtual sequence is usually executed by a virtual sequencer which has
handles to real sequencers. This need for a virtual sequence arises when you require different
sequences to be run on different environments.

Virtual sequence base class

Virtual sequence base class is extended from uvm_sequence and parameterized with
uvm_transaction. Declaring p_sequencer as macro , handles virtual sequencer and master,
slave sequencer and environment config.

Fig 9.19 Virtual base sequence

In virtual sequence body method,Getting the env configurations and Dynamic casting of
p_sequencer and m_sequencer .Connect the master sequencer and slave sequencer in
p_sequencer with local master sequencer and slave sequencer.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
120

Fig 9.20 Virtual base sequence body

In the virtual sequence body method, creating master and slave sequence handles and starts
the slave sequence within fork join_none and master sequence within repeat statement.

Fig 9.21 axi4_virtual_bk_8b_read_data_seq body​

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
121

Fig 9.22 axi4_virtual_nbk_8b_read_data_seq body method

\Table 9.5: . Describing virtual sequences for Blocking and Non Blocking

 Sections Virtual sequences Description

Burst type axi4_virtual_bk_incr_burst_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none.

 axi4_virtual_bk_incr_burst_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_incr_burst_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_incr_burst,
read_incr_burst sequences) with p_sequencer, master can
be repeatedfor multiple times, both master and slave can
be started within fork join_none

 axi4_virtual_bk_wrap_burst_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_wrap_burst sequences)
with p_sequencer, master can be repeatedfor multiple

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
122

times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_wrap_burst_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_wrap_burst_write_read_se
q

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_incr_burst,
bk_read_incr_burst sequences) with p_sequencer, master
can be repeatedfor multiple times, both master and slave
can be started within fork join_none

Responses axi4_virtual_bk_okay_resp_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_okay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_okay_resp_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_okay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_okay_resp_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_okay_resp,
bk_read_okay_resp sequences) with p_sequencer, master
can be repeatedfor multiple times, both master and slave
can be started within fork join_none

 axi4_virtual_bk_exokay_resp_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_exokay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_exokay_resp_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_exokay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
123

 axi4_virtual_bk_exokay_resp_write_read_s
eq

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_exokay_resp,
bk_read_exokay_resp sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

Data transfer axi4_virtual_bk_8b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_8b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_8b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_8b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_8b_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_8b_transfer,
bk_read_8b_transfer sequences) with p_sequencer, master
can be repeatedfor multiple times, both master and slave
can be started within fork join_none

 axi4_virtual_bk_16b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_16b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_16b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_16b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_16b_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_16b_transfer,
bk_read_16b_transfer sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

 axi4_virtual_bk_32b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
124

and master sequences(bk_write_32b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_32b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_32b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_32b_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_32b_transfer,
bk_read_32b_transfer sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

 axi4_virtual_bk_64b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_64b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_64b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_read_64b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_bk_64b_write_read_seq

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(bk_write_64b_transfer,
bk_read_64b_transfer sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

Burst type axi4_virtual_nbk_incr_burst_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none.

 axi4_virtual_nbk_incr_burst_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
125

times, both master and slave can be started within fork
join_none.

 axi4_virtual_nbk_incr_burst_write_read_se
q

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_incr_burst,
nbk_read_incr_burst sequences) with p_sequencer, master
can be repeatedfor multiple times, both master and slave
can be started within fork join_none.

 axi4_virtual_nbk_wrap_burst_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_incr_burst_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_incr_burst sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_incr_burst_write_read_se
q

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_wrap_burst,
nbk_read_wrap_burst sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none.

Responses axi4_virtual_nbk_okay_resp_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_okay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_okay_resp_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_okay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_okay_resp_write_read_se
q

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_okay_resp,
nbk_read_okay_resp sequences) with p_sequencer, master
can be repeatedfor multiple times, both master and slave
can be started within fork join_none

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
126

 axi4_virtual_nbk_exokay_resp_write_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_exokay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_exokay_resp_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_exokay_resp sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_exokay_resp_write_read_
seq

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_exokay_resp,
nbk_read_exokay_resp sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

Data transfer axi4_virtual_nbk_8b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_8b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_8b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_8b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_8b_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_8b_transfer,
nbk_read_8b_transfer sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

 axi4_virtual_nbk_16b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_16b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_16b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
127

and master sequences(nbk_read_16b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_16b_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_16b_transfer,
nbk_read_16b_transfer sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

 axi4_virtual_nbk_32b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_32b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_32b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_32b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_32b_write_read_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_32b_transfer,
nbk_read_32b_transfer sequences) with p_sequencer,
master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

 axi4_virtual_nbk_64b_write_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_64b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_64b_read_data_seq Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_read_64b_transfer sequences)
with p_sequencer, master can be repeatedfor multiple
times, both master and slave can be started within fork
join_none

 axi4_virtual_nbk_64b_write_read_seq

Extending from virtual base class. Declaring handles of
sequences and inside body method constructing handles
of sequence.In the sequence body method start the slave
and master sequences(nbk_write_64b_transfer,
nbk_read_64b_transfer sequences) with p_sequencer,

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
128

master can be repeatedfor multiple times, both master and
slave can be started within fork join_none

9.6 Test Cases

The uvm_test class defines the test scenario and verification goals.

A) In base test, declaring the handles for environment config and environment class.

Fig 9.23 Base test

B) In build phase, calling the setup_env_cfg and constructing the environment handle

C) Inside setup_env_cfg function, constructing the environment config class handle. With
the help of this env_cfg_h handle all the required fields in the config class have been set up
with respective values and then calling the setup_master_agent_config and
setup_slave_agent_config functions.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
129

Fig 9.24 Setup env_cfg

D) In setup_master_agent_config function, master_agent_config class handle which is in
env_config class has been constructed with the help of this handle all the required fields in
master_agent_config class has been setup.

 Fig 9.25 Master_agent_cfg setup

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
130

E) In setup_slave_agent_config function, for each slave agent configuration trying to
construct slave_agent_config class handle which is in env_config class with the help of this
handle all the required fields in slave_agent_config class has been setup Followed by the end
of the elaboration phase used to print the topology.

​ ​ ​ ​ Fig 9.26 Slave_agent_cfg setup

Extend the 8bit_test from base test and declare virtual sequence handle then create virtual
sequence in test, and start the virtual sequence in phase, raise and drop objection.

 Fig 9.27 Example for 8bit read data test

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
131

 Fig 9.29 Run_phase of 8bit_test

Table 9.6 : Describing Test cases

 Sections Test Names Description

 Base test axi4_base_test Extending the base test from the uvm_test and creating the
env_config, master_agent_cfg and slave_agent_cfg

 axi4_blocking_write_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_write_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

Burst type axi4_blocking_incr_burst_write_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_incr_burst_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_incr_burst_write_rea
d_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_wrap_burst_write_te
st

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_wrap_burst_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
132

 axi4_blocking_wrap_burst_write_re
ad_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

Responses axi4_blocking_okay_response_write
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_okay_response_read
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_okay_response_write
_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_exokay_response_wr
ite_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_exokay_response_rea
d_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_exokay_response_wr
ite_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

Data transfer axi4_blocking_8b_write_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_8b_read_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_8b_write_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_16b_write_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_16b_read_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_16b_write_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
133

 axi4_blocking_32b_write_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_32b_read_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_32b_write_read_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_64b_write_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_64b_write_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_blocking_64b_read_data_test Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

Burst type axi4_non_blocking_incr__burst_wri
te_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_incr__burst_rea
d_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_incr_burst_write
_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_wrap_burst_writ
e_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_wrap_burst_rea
d_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_wrap_burst_writ
e_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

Responses axi4_non_blocking_okay_response_
write_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
134

 axi4_non_blocking_okay_response_
read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_okay_response_
write_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_exokay_respons
e_write_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_exokay_respons
e_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_exokay_respons
e_write_read_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

Data transfer axi4_non_blocking_8b_write_data_t
est

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_8b_wread_data_
test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_8b_write_read_t
est

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_16b_write_data
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_16b_read_data_
test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_16b_write_read
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_32b_write_data
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_32b_read_data_
test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
135

 axi4_non_blocking_32b_write_read
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_64b_write_data
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_64b_read_data_
test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

 axi4_non_blocking_64b_write_read
_test

Extended from the axi4_base_test and created the virtual
sequence handle and starting the sequences in between phase
raise and drop objection.

9.7 Testlists

Regression list for axi4

Table 9.7 Regression list of Test cases

 Test Names Description

axi4_blocking_incr_burst_write_test Checking for incr bust type write transac- tion

axi4_blocking_incr_burst_read_test Checking for incr bust type read transaction

axi4_blocking_incr_burst_write_read_test Checking for incr bust type write read transaction

axi4_blocking_wrap_burst_write_test Checking for wrap bust type write transac- tion

axi4_blocking_wrap_burst_read_test Checking for wrap bust type read transac- tion

axi4_blocking_wrap_burst_write_read_test Checking for wrap bust type write read transaction

axi4_blocking_okay_response_write_test Checking for okay response type write transaction

axi4_blocking_okay_response_read_test Checking for okay response type read transaction

axi4_blocking_okay_response_write_read_test Checking for okay response type write read transaction

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
136

axi4_blocking_8b_write_data_test Checking for 8b write data transaction

axi4_blocking_8b_data_read_test Checking for 8b read data transaction

axi4_blocking_8b_write_read_test Checking for 8b write read transaction

axi4_blocking_16b_write_data_test Checking for 16b write data transaction

axi4_blocking_16b_data_read_test Checking for 16b read data transaction

axi4_blocking_16b_write_read_test Checking for 16b write read transaction

axi4_blocking_32b_write _data_test Checking for 32b write data transaction

axi4_blocking_32b_data_read_test Checking for 32b read data transaction

axi4_blocking_32b_write_read_test Checking for 32b write read transaction

axi4_blocking_64b_write_data_test Checking for 64b write data transaction

axi4_blocking_64b_data_read_test Checking for 64b read data transaction

axi4_blocking_64b_write_read_test Checking for 64b write read transaction

axi4_non_blocking_incr_burst_write_test Checking for incr bust type write transac- tion

axi4_non_blocking_incr_burst_read_test Checking for incr bust type read transaction

axi4_non_blocking_incr_burst_write_read_test Checking for incr bust type write read transaction

axi4_non_blocking_wrap_burst_write_test Checking for wrap bust type write transac- tion

axi4_non_blocking_wrap_burst_read_test Checking for wrap bust type read transac- tion

axi4_non_blocking_wrap_burst_write_read_test Checking for wrap bust type write read transaction

axi4_non_blocking_okay_response_write_test Checking for okay response type write transaction

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
137

axi4_non_blocking_okay_response_read_test Checking for okay response type read transaction

axi4_non_blocking_okay_response_write_read_test Checking for okay response type write read transaction

axi4_non_blocking_8b_write_data_test Checking for 8b write data transaction

axi4_non_blocking_8b_data_read_test Checking for 8b read data transaction

axi4_non_blocking_8b_write_read_test Checking for 8b write read transaction

axi4_non_blocking_16b_write_data_test Checking for 16b write data transaction

axi4_non_blocking_16b_data_read_test Checking for 16b read data transaction

axi4_non_blocking_16b_write_read_test Checking for 16b write read transaction

axi4_non_blocking_32b_write_data_test Checking for 32b write data transaction

axi4_non_blocking_32b_data_read_test Checking for 32b read data transaction

axi4_non_blocking_32b_write_read_test Checking for 32b write read transaction

axi4_non_blocking_64b_write_data_test Checking for 64b write data transaction

axi4_non_blocking_64b_data_read_test Checking for 64b read data transaction

axi4_non_blocking_64b_write_read_test Checking for 64b write read transaction

axi4_non_blocking_unaligned_addr_write_read_test Checking for unaligned address write read transactions

axi4_non_blocking_slave_error_write_read_test Checking for slave error write read transactions

axi4_non_blocking_write_read_rand_test Checking for write read random transactions

axi4_non_blocking_cross_write_read_test Checking for cross of length X burst X size write read transactions

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
138

Chapter 10
User Guide

The user guide is the document that explains how to run tests on different platforms like
Questa sim, cadence, and synopsis and also explains how to view waves, coverage.

User Guide Link

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
139

https://docs.google.com/document/d/1fmUDGD-MMln0XgWmcXX71OrD8vQusmODv-iq_Ckhikk/edit?usp=sharing

Chapter 11
References

Reference Link 1

Reference Link 2
Reference Link 3

Reference Link 4

 AXI4_AVIP ​ ​ ​ ​ ​ ​ ​ ​ ​
140

http://www.gstitt.ece.ufl.edu/courses/fall15/eel4720_5721/labs/refs/AXI4_specification.pdf
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://drive.google.com/file/d/1Jc6TRFx5K8ZTfWuSNcF_fHUWQ3oBkR39/view?usp=sharing
https://drive.google.com/file/d/15fL7csqlds5N6mKpMjhk43O9GLXkiWPl/view?usp=sharing

	Contents
	
	List of Tables
	
	List of Figures
	
	
	
	Chapter 1
	 INTRODUCTION
	1.1 AXI Read and Write Channels
	1.2 AXI Read Transactions
	
	1.3 AXI Write Transactions
	

	
	 1.4 Interface Signal Definition
	1.5 Key Features
	TO_DO Key features : ​
	1.7 Write Channel Signal Descriptions :
	Awburst: MASTER - Type of transfer
	fixed :
	Incr :
	wrap :
	Write Data channel
	Write Response
	Read Address:
	1.​Valid default value is 0, other signals can be anything
	Read Response:
	1.8 Handshake Process:
	1.9 Relationships between the channels:
	Read transaction dependencies
	Write Response dependencies

	Chapter 2
	ARCHITECTURE
	2.1 AXI4 AVIP Testbench Architecture

	Chapter 3
	IMPLEMENTATION
	3.1 Pin Interface
	3.2 Testbench Components
	
	`3.2.1 AXI HDL Top
	3.2.2 AXI Interface
	3.2.3 AXI Master Agent BFM Module
	3.2.4 AXI Master Driver BFM Interface
	
	
	3.2.5 AXI Master Monitor BFM Interface
	
	3.2.6 AXI Slave Agent BFM Module
	3.2.7 AXI Slave Driver BFM Interface
	3.2.8 AXI Slave Monitor BFM Interface
	3.2.9 AXI HVL_TOP
	
	3.2.10 AXI Environment
	3.2.11 AXI Scoreboard
	3.2.12 AXI Virtual Sequencer
	
	3.2.13 AXI Master Agent
	
	
	3.2.14 AXI Master Sequencer
	3.2.15 AXI Master Driver Proxy
	3.2.16 AXI Master Monitor Proxy
	​3.2.17 AXI Slave Agent
	3.2.18 AXI Slave Sequencer
	3.2.19 AXI Slave Driver Proxy
	
	3.2.20 AXI Slave Monitor Proxy
	
	3.2.21 UVM Verbosity

	Chapter 4
	4.1.Package Content

	Chapter 5
	Configuration
	5.1 Global package variables
	5.2 Master agent configuration
	
	5.3 Slave agent configuration
	5.4 Environment configuration
	5.5 Memory Mapping

	Chapter 6
	Verification Plan
	6.1 Verification plan
	Verification Plan Link:
	axi4 avip vplan
	AXI4 Write Channel Transfers
	AXI4 Read Channel Transfers

	6.2 Template of Verification Plan
	6.3 Sections for different test Scenarios
	Creating the different Sections for different test cases to be developed in the point of implementing the test scenarios
	 6.3.1 Directed test
	
	6.3.2 Random test
	
	
	6.3.3 Cross test

	
	Chapter 7
	Assertion Plan
	7.1 Assertion Plan overview
	7.1.1 What are assertions?​​​​​
	7.1.2 Why do we use it?
	7.1.3 Benefits of Assertions

	7.2 Template of Assertion Plan
	7.3 Assertion Condition
	7.3.2. AXI_WA_UNKNOWN_SIGNALS_CHECK
	7.3.3. AXI_WA_VALID_STABLE_CHECK

	Chapter 8
	Coverage
	8.1 Functional Coverage
	8.2 Uvm_Subscriber
	8.2.1 Analysis export
	8.2.2 Write function

	8.3 Covergroup
	8.4 Coverpoints
	8.5 Illegal bins

	8.6 Creation of the covergroup
	8.7 Sampling of the covergroup
	8.8 Checking for the coverage

	
	Chapter 9
	Test Cases
	9.1 Test Flow
	9.2 AXI4 Test Cases Flow Chart
	9.3 Transaction
	9.3.1 Master_tx
	9.3.2 Slave_tx

	9.4 Sequences
	9.5 Virtual sequences
	9.6 Test Cases
	9.7 Testlists

	
	Chapter 10
	User Guide

	Chapter 11
	References

