
 
Review of Basic Statistical Concepts 

 
The purpose of this review is to summarize the basic statistical concepts. Introductory statistics dealt 
with three main areas: descriptive statistics, probability, and inference. 
 

Descriptiv
e Statistics 

Sample data may be summarized graphically or with summary statistics. Sample statistics include 
the mean, variance, standard deviation, and median. For the following definitions let x1, x2, … , xn 
represent the values obtaining from a random sample of size n drawn from a population of interest. 

 
Sample 
Mean  

The mean is just the average of the n values observed. 

 
Sample 
Variance  

The sample variance equals the mean squared deviation from . A small 
 means that the observed values cluster around the average, while a 

large variance means that they are more spread out. Thus, the variance is a 
measure of the “spread” in the sampled values. 

 
Sample 
Standard 
Deviation  

The sample standard deviation, s, is often a more useful measure of spread 
than the sample variance, s2, because s has the same units (inches, pounds, 
etc.) as the sampled values and .  

 
StatGraphics Common descriptive statistics can be obtained by following: Describe > Numeric Data > 

One-Variable Analysis > Tabular Options > Summary Statistics 
 

Example 1 The file LMF contains the three-year return for a 
random sample of 26 mutual funds. All of these 
funds involve a load (a type of sales charge). 
StatGraphics output is to the right. 

 
 
 

Random Variables and their Probability Distributions 
 

Random 
Variable 

A variable whose numerical value is determined by chance. The key elements here are that the 
variable assumes a number (sales volume, rate of return, test score, etc.) and that the sample 
selection process generates the numbers randomly, i.e., by a “random” selection. 
 
(In these notes, a random variable will be designated by a capital letter, such as X, to differentiate it 
from observed values x. For instance, X might represent the height of a man to be selected randomly. 
Once the man has been selected, his height is given by the value x, say x = 68 inches.) 

 
Probability 
Distribution 

Although the values of a random variable are subject to chance, some values are more likely to 
occur than others. For instance, the height of a randomly selected man is more likely to measure 6’ 



 
than 7’. It is the random variable’s probability distribution that determines the relative likelihood 
of possible values. 

Standardized Values 
 

For the value x drawn from a population with mean μ and standard deviation σ, the standardized 

value . For example, if incomes have a mean and 
standard deviation of $48,000 and $16,000, respectively, then someone making $56,000 has a 

standardized income of  because their income is one-half standard 
deviation above the mean income. The advantage of standardizing is that it facilitates the 
comparison of values drawn from different populations. 
 

Standardized Random Variables 
 

For the random variable X with mean μ and standard deviation σ,  is the Standardized 
random variable. (Note: The Standardized Variable always has mean 0 and standard deviation 1.) 
 

The Normal Distribution 
 

In this course we will make use of  (at least) four distributions designed to model continuous data: 
the Normal, t, F, and Chi-Square. Of these, the normal distribution is by far the most important 
because of its role in statistical inference. Much of the logic behind what we do and why we do it is 
based upon an understanding of the properties of the normal distribution, and of the theorems 
involving it, particularly the Central Limit Theorem. 
 

Properties 1.​ Normal distributions are bell-shaped. (In fact, it is sometimes called the “Bell Curve”.) 
2.​ Normal distributions are symmetric about their mean. 
3.​ Normal distributions follow the 68-95-99.7 rule: 

●​ (Approximately) 68% of the area under the curve is within one standard deviation σ of the 

mean μ 

●​ (Approximately) 95% of the area under the curve is within two standard deviations σ of the 

mean μ 

●​ (Approximately) 99.7% of the area under the curve is within three standard deviations σ of the 

mean μ 

4.​ If the random variable X is normal with mean μ and standard deviation σ, then the random 

variable  is standard normal, i.e., is normal with mean equal 0 and standard 
deviation equal 1. 



 

 
 

Finding 
probabilities 
in Excel 

Cumulative Probabilities for any normal random variable X, i.e., P(X  x), are easy to find in 
Excel. Follow:  fx > Statistical > NORMDIST and enter TRUE in the Cumulative field. 
Probabilities of the form P(X > x) or P(a < X < b) can be obtained by subtraction. 

 
Example To find P(-1.2 < Z < 2),  

note that P(-1.2 < Z < 2) = 
P(Z < 2) – P(Z  -1.2) 
and use the Excel output to 
the right. 
 
 
 
Answer = 0.9772 – 0.1151 
             = 0.8621 

 
 

 
 

Critical 
Values z α is defined by P(Z > zα) = α. Critical values are used in the construction of confidence intervals and 

(optionally) in hypotheses testing. To find the critical value associated with the significance level α, 

follow:  fx > Statistical > NORMINV and enter 1 - α in the Probability field. 
 



 
Example From the Excel output to 

the right we see that 
z0.05 = 1.645 

 
 
 
 
 
 
 

The Distribution of the Sample Mean  
 

Because, when we take a random sample, the values of a random variable are determined by chance, 
statistics such as the sample mean that are calculated from the values are themselves random 

variables. Thus the random variable  has a probability distribution of its 

own. If we intend to use the sample mean  to estimate the mean μ of the 
population from which the sample was drawn, then we need to know what values the random 
variable  can assume and with what probability, i.e., we need to know the probability distribution 
of . It can be shown (using advanced calculus) that  has the following properties: 
 

●​ The mean of  equals the mean of X, i.e., . This just says that the sample mean  is 

an unbiased estimator of the population mean μ. 

●​ The variance of  is less than that of X. In fact . This states that there is less 
variability in averaged values (and the variability decreases as the size of the sample increases) 
than there is in individual values. Hence, you might not be surprised if a randomly selected man 
measured 7’, but you would be suspicious if someone claimed that 100 randomly chosen men 
averaged 7’! 

●​ If the variable X is normally distributed, then  will also be normal. 
 
The properties above, however, don’t describe the shape of the distribution of  (needed for 

making inferences about μ) except in the special case where X is normal! They only contribute 
information about the mean and spread of the distribution. In general, the shape of the distribution of 

 may be difficult to determine for non-normal populations and small samples. However: 
 



 

●​ For large samples the Central Limit Theorem states that  will be at least approximately 
normal. (Most introductory statistics texts consider a sample large whenever n > 30.) 

 
Example The dean of a business 

school claims that the 
average weekly income of 
graduates of his school 1 
year after graduation is 
$600, with a standard 
deviation of $100. Find the 
probability that a random 
sample of 36 graduates 
averages less than $570.  

Solution: Let X = weekly income of a sampled graduate 1 year after          

graduation. We are asked to find  for 36 graduates. 
 

 
 
Note: Without the Central Limit Theorem we could not have 
approximated the probability that a sample of graduates average less 
than $570 because the distribution of incomes is not usually normal.  

 
 

Statistical Inference: Estimation 
 

Point 
Estimate 

A single number used to estimate a parameter. For example, the sample mean  is typically used 

to estimate the population mean μ.  
 

Interval 
Estimate 

A range of values used as an estimate of a population parameter. The width of the interval provides a 
sense of the accuracy of the point estimate.  

 

Confidence Interval Estimates for μ 
 

Confidence intervals for μ have a characteristic format: *standard error, where CV stands 

for Critical Value and the standard error is the (usually estimated) standard deviation of . 
 

Case I: X normal or n >30, and σ is known 
 

A (1 - α)*100% confidence interval estimate for μ is given by 

                                     

Case II: n  30 and σ is unknown A (1 - α)*100% confidence interval estimate for μ is given by 

                                   , with n-1 degrees of 
freedom 

Case III: X is normal and σ is unknown A (1 - α)*100% confidence interval estimate for μ is given by 

                                   , with n-1 degrees of 
freedom 

 



 
 Case III requires some explanation. When X is normal, and we must use the sample standard 

deviation s to estimate the unknown population standard deviation σ, the studentized statistic 

 has a t distribution with n-1 degrees of freedom. Hence, we must use the critical value    

t α/2 from the t distribution with n-1 degrees of freedom. The properties of the t distributions are 
similar to those for the standard normal distribution Z, except that the t  has a larger spread to 

reflect the added uncertainty involved in estimating σ by s.  
 
Note: For large samples, where n  30, there is very little difference between the t distribution with 
n-1 degrees of freedom and the standard normal distribution Z. Therefore, for large samples (Case II 

in the table above) some texts replace t α/2 with  z α/2  even when X is normal and σ is unknown! 
 

 
 
 

Example A manufacturer wants to 
estimate the average life of an 
expensive component. 
Because the components are 
destroyed in the process, only 
5 components are tested. The 
lifetimes (in hours) of the 5 
randomly selected 
components are 92, 110, 115, 
103, and 98. Assuming that 
component lifetimes are 
normal, construct a 95% 
confidence interval estimate 

Solution: Using Excel,  hours, and  hours. From 
the discussion above, the critical value is t 0.025 = 2.776.                     
(Note: In Excel, shown below, to find the critical value associated with 

the t distribution and significance level α, follow:  fx > Statistical > 

TINV and enter α in the Probability field.)  
  



 
of the component’s life 
expectancy. 

   
 
Thus a 95% CIE for the mean lifetime of the components is given by     

                     or  (92.2, 115.0) hours  
 
 
  

Statistical Inference: Decision Making 
 

In hypothesis testing we are asked to evaluate a claim about something, such as a claim about a 
population mean. For instance, in a previous example a Business dean claimed that the average 
weekly income of graduates of his school one year after graduation is $600. Suppose that you 
suspect the dean’s claim may be exaggerated. Hypothesis testing provides a systematic framework, 
grounded in probability, for evaluating the dean’s claim against your suspicions. 
 
Although hypothesis testing uses probability distributions to arrive at a reasonable (and defensible) 
decision either to reject or "fail to reject" the claim associated with the null hypothesis of the test, H0, 
it does not guarantee that the decision is correct! The table below outlines the possible outcomes of a 
hypothesis test. (Note: We avoid "accepting" the null hypothesis for the same reason juries return 
verdicts of "not guilty" rather than of "innocent") 
 

                           Decision:                                                 
TRUTH Accept H0  Reject H0 
H0 True correct decision Type I error 
H0 False Type II error correct decision 

 
Type I 
error 

The error of incorrectly rejecting H0
 when, in fact, it's true. In a hypothesis test conducted at the 

significance level α, the probability of making a type I error, if H0 is true, is at most α. 
 

Type II 
error 

The error of incorrectly failing to reject H0 when, in fact, it's false. For a fixed sample size n, you cannot 
simultaneously reduce the probability of making a Type I error and the probability of making a  Type II 
error. (This is the statistician’s version of “there is no such thing as a free lunch.”) However, if you can 
afford to take a larger sample, it is possible to reduce both probabilities. 

 
 

Decision Making: Hypothesis Testing 
 



 
Example Suppose that a sample of 36 graduates of the business school averaged $570 per week one year after 

graduation. Test the dean’s claim, against your suspicion, at the 5% level of significance.  
Solution: 

1. H0: μ = $600  (the dean’s claim) 

    HA: μ < $600  (your suspicion) 

2. α = 0.05  (the probability of rejecting the 
    dean’s claim if she’s right) 
3. Draw some pictures (see box to the right) 
4. Critical Value: -z 0.05 = -1.645 
5. From the sample - 
    Standardized Test Statistic: 

                    
6. Conclusion: There is sufficient evidence to 
     reject the dean’s claim at the 5% level of  
     significance. 

 
 

the P-value Approach to Hypothesis Testing 
 

P-value 
 

The smallest significance level at which you would reject H0. The p-value is calculated from the test 
statistic, and is doubled for two-sided tests. 
 

Note: α and the p-value are the “before” and “after” significance levels for the test. We can reach a 
decision to accept or reject H0 by comparing the two significance levels. 
 

Rule: If the p-value > α, then we "fail to reject" H0 

          If the p-value  α, then we reject H0, i.e., we  reject H0 for small p-values 
 

Example Suppose that a sample of 36 graduates of the business school averaged $570 per week one year after 
graduation. Use the p-value to test the dean’s claim, against your suspicion, at the 5% level of 
significance. 

Solution: 
Steps 1-3 are the same as before. 
4. Critical Values are not used in this approach. 
5. From the sample - 
    Standardized Test Statistic: 

                    

    p-value =  = 0.0359 < 0.05 = α, where we have used the fact that the test is  
                                                                             left-tailed! 
6. Conclusion: There is sufficient evidence to reject the dean’s claim at the 5% level of significance. 



 
Notice that we rejected the Dean’s claim under both the critical value and p-value approaches. This 
was not a coincidence: the two approaches always lead to the same decision. Since p-values are 
routinely computed by StatGraphics and Excel, we will usually use p-values to conduct significance 
tests. 
 
Note: Many of the (hypothesis) tests conducted in this course are two-sided, and assume that we are 
sampling from a normal population with unknown variance. When this is the case, Statgraphics will 
automatically return the correct p-value for the two-sided t test. 
 
 
 
 
 
 
 

 
 
Example 1 (p.1)  
Example 1. 提供了一組有關26個共同基金的三年回報率的統計數據。其逐項統計數據的內容與
意義如下。 
1. 計數 (Count)：26 
意義：這表示樣本中共有26個共同基金的回報率數據。計數是進行統計分析的基礎，樣本越大，
結果的可靠性通常越高。 
2. 平均值 (Average)：16.2346 
意義：這是所有26個共同基金三年回報率的算術平均值。它反映了這些基金在三年內的整體表
現。平均值越高，表示基金的回報潛力越好。 
3. 方差 (Variance)：40.4208 
意義：方差是用來衡量數據分散程度的指標。方差越大，表示回報率的波動性越大。這意味著基
金的回報率在不同基金之間差異較大。 
4. 標準差 (Standard Deviation)：6.35773 
意義：標準差是方差的平方根，表示數據點與平均值之間的平均距離。這裡的標準差約為6.36，
顯示基金回報率的波動性。較高的標準差意味著回報率有較大的變化範圍。 
5. 最小值 (Minimum)：8.0 
意義：這是樣本中最低的回報率，表示在這26個基金中，最低的三年回報為8%。這可以幫助投
資者了解最差的投資表現。 
6. 最大值 (Maximum)：32.7 
意義：這是樣本中最高的回報率，表示在這26個基金中，最高的三年回報為32.7%。這提供了投
資者對於最佳投資表現的參考。 
7. 標準偏態 (Standard Skewness)：2.26003 
意義：標準偏態用來衡量數據分布的對稱性。正偏態（值大於0）表示數據的右側尾部較長，意味
著有較多的高回報率基金，可能會吸引投資者的注意。 
8. 標準峰度 (Standard Kurtosis)：1.1129 
意義：標準峰度用來衡量數據分布的尖峭程度。值大於3表示數據分布比正態分布更尖峭，值小
於3則表示分布較平坦。這裡的值為1.1129，顯示出這組數據的分布相對較平坦，可能意味著回
報率的極端值（非常高或非常低）較少。 
總結 
這組統計數據提供了對26個共同基金回報率的全面了解。從平均值和標準差可以看出這些基
金的整體表現和波動性，而最小值和最大值則幫助投資者評估潛在的風險和回報。偏態和峰度
的分析則進一步揭示了數據分布的特徵，對於投資決策非常重要。 
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