Please make a copy of this doc and edit locally.

PyTorch Release Planning | Feature Submission
Template

There are some examples from the past releases in Appendix.

Feature proposed:

Example: “A torch.special module, analogous to SciPy’s special module.”

torch.export() API, a generic way to extract full static graph from PyTorch

Point(s) of contact:

Yanan Cao (PyTorch) Avik Chaudhuri

Proposed release type:
Please review the criteria listed in the Appendix - Feature Classification.

Stable

Beta

v | Prototype

Release Mode (pytorch/pytorch features only):

v | In-tree

Out-of-tree

If “out-of-tree”, please include the GH repo name

Description and value to the user (optional for prototype) :

mailto:ycao@meta.com
mailto:avik@meta.com

Please include a link or pointer to user workflow if applicable.

torch.export() provides a sound tracing mechanism to capture a full graph from a PyTorch program
based on new technologies provided by PT2.0.

Users can extract a clean representation (Export IR) of a PyTorch program in the form of a dataflow
graph, consisting of mostly straight-line calls to PyTorch operators. Export IR can then be transformed,
serialized, saved to file, transferred, loaded back for execution in an environment with or without Python.

Link to design doc, GitHub issues, past submissions, etc (optional for
prototype):

What feedback adopters have provided:

Please list Meta and/or OSS users/teams that have tried the feature and provided feedback.

If that feedback motivated material changes (API, doc, etc..), a quick overview of the changes
and the status (planned, in progress, implemented) would be helpful as well.

Note: This is most critical for features at the Prototype and Beta stage. At Stable stage, there
should be more users (probably more than you can list) but it still might be useful to highlight
key early users who could provide useful feedback on the feature.

Incremental requirements need to reach Stable (if applicable):

Example:

(optional for prototype) Serialization format changes, backward
compatibility, breaking changes

Please describe whether you're extending persistent formats with this change - e.g. TorchScript
format, operators which can appear in TorchScript programs, input data serialization, etc.

None

Plan for documentations / tutorials:

Based on the categories, we target the checklisted items for each feature. The following table
shows the typical requirements for the features at different stages.

You'll notice that we have parity between stable and beta for these items. Depending on the
feature we can back off on these but generally speaking we should be treating beta features in a
similar manner and with a similar level of product thinking.

*** Can be internal, team members, and external users

O - optional
Requirement
Artifact Prototype Beta Stable Proposed Feature
Doc Strings v v v v
Unit Tests v v/ v v
Cl Coverage v/ v v v/
Design Review / TL Signoff 4 4
Recipe or Tutorial 4 4
Mentioned in Released Blog(s) 4 4

User Feedback (feature with User API V4 V4 v
surface)***

Dogfooding: 1-2 early adopter teams V4 V4 V4
(internal or external) have found the
feature useful and their feedback has
been incorporated

API Stability V4

Top-line adoption metrics (internal or V4
external), feedback from major
companies and Al researchers has
been incorporated

Please describe the plan for the artifacts you listed above. Also, include additional
documentations you would write if given more time.

SELECT ONE OF THE FOLLOWING (change the color of the tick to black):

Tutorial exists. Link: {{add link here}}

v | Will submit a PR to pytorch/tutorials by 09/25/2023

Will submit a PR to {{add library repo}}

Tutorial is not needed. {{explain why}}

Add more details here:

Marketing/Blog Coverage

Are you requesting feature Inclusion in the release blogs?_Reminder Beta/Stable requires
rel l

v/ | Yes

No

Are you requesting other marketing assistance with this feature? E.g. supplementary blogs,
social media amplification, etc.

Just release notes. Nothing else for now. Wait for PyTorch Conference
Announcement

OS / Platform / Compute Coverage

Please list the platforms supported by the proposed feature. If the feature supports all the
platforms, write “all”.

Goal of this section is to clearly share if this feature works in all PyTorch configurations or is it
limited to only certain platforms/configurations (e.g. CPU only, GPU only, Linux only, etc...)

Supported Platforms Limitations
all
Example:
Supported Platforms Limitations
Android May work with a range of supported NDKs and Gradle, CPU only
i0S CPU only

Testing Support (Cl, test cases, etc..)

Please provide an overview of test coverage. This includes unit testing and integration testing,
but if E2E validation testing has been done to show that the feature works for a certain set of
use cases or models please mention that as well.

Also, include what additional tests you would implement if given more time.

torch.export() is covered in Cl with unit tests and end-to-end real
models.

Appendix

Examples

[1.10] Conjugate View

[1.10] PyTorch Mobile Tracing-based Mobile Interpreter
[1.9] torch.linalg

[1.9] Freezing API

[1.8] EX
[1.6] vmap

Feature Classification

The following classification was established at PyTorch 1.6 release. For details of what was
changed then, please refer to PyTorch feature classification changes.

Stable

A stable feature means that the user value-add is or has been proven, the APl isn’'t expected to
change, the feature is performant and all documentation exists to support end user adoption.

Level of commitment: We expect to maintain these features long term and generally there
should be no major performance limitations, gaps in documentation and we also expect to
maintain backwards compatibility (although breaking changes can happen and notice will be
given one release ahead of time).

Beta

The value-add, similar to a Stable feature, has been proven and the feature generally works and
is documented. This feature is tagged as Beta because the APl may change based on user
feedback, because the performance needs to improve or because coverage across operators is
not yet complete.

Level of commitment: We are committing to seeing the feature through to the Stable
classification. We are however not committing to Backwards Compatibility. Users can depend on
us providing a solution for problems in this area going forward, but the APIs and performance
characteristics of this feature may change.

Prototype

The feature is not available as part of binary distributions like PyPI or Conda (except maybe
behind run-time flags), but we would like to get high bandwidth partner feedback (see
#Dogfooding) ahead of a real release in order to gauge utility and any changes we need to
make to the UX.

To test these kinds of features we would, depending on the feature, recommend building from

https://fb.quip.com/Lb9FAaqEZuLy
https://fb.quip.com/X7EqA6e4atEk
https://fb.quip.com/mJjyAAGhwMDC
https://fb.quip.com/tWKaAb1UGduD
https://fb.quip.com/h9GhAfasrV1G#KMGAAAwAyYu
https://fb.quip.com/BYsjAcYzPGdC#ABNAAAjGFYJ
https://pytorch.org/blog/pytorch-feature-classification-changes/
https://fb.workplace.com/groups/ToffeeInternal/permalink/654476565130827/
https://fb.workplace.com/groups/ToffeeInternal/permalink/654476565130827/

master or using the nightly builds that are made available on pytorch.org. For each prototype
feature, a pointer to draft docs or other instructions will be provided.

Level of commitment: We are committing to gathering high bandwidth feedback only. Based on
this feedback and potential further engagement between community members, we as a
community will decide if we want to upgrade the level of commitment or to fail fast. Additionally,
while some of these features might be more speculative (e.g. new Frontend APIs), others have
obvious utility (e.g. model optimization) but may be in a state where gathering feedback outside
of high bandwidth channels is not practical, e.g. the feature may be in an earlier state, may be
moving fast (PRs are landing too quickly to catch a major release) and/or generally active
development is underway.

	Please make a copy of this doc and edit locally.
	
	PyTorch Release Planning | Feature Submission Template
	Feature proposed:
	Point(s) of contact:
	Proposed release type:
	Release Mode (pytorch/pytorch features only):
	
	Description and value to the user (optional for prototype) :
	Link to design doc, GitHub issues, past submissions, etc (optional for prototype):
	What feedback adopters have provided:
	Incremental requirements need to reach Stable (if applicable):
	(optional for prototype) Serialization format changes, backward compatibility, breaking changes
	Plan for documentations / tutorials:
	Marketing/Blog Coverage
	OS / Platform / Compute Coverage
	Testing Support (CI, test cases, etc..)
	
	Appendix
	Examples
	Feature Classification
	Stable
	Beta
	Prototype

