

Draft playlist template:

MGSE8.G.4 Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.

Learning Goals:

- SWBAT recall and use rotations, reflection, translations, and dilations
- SWBAT compare two-dimensional figures and describe the transformation that exhibits the similarity between them
- SWBAT compare two-dimensional figures and describe the sequence of transformations

Resource drop:

- Khan Academy on transformations
- GO Math: Unit 4

Standard	Descriptor	Taught	Reinforced
■CC.8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.	SE: 281–282, 287–288, 293– 294, 297–300, 316–317, 318, 321–323, 324	SE: 283–284, 289–290, 295– 296, 301–302, 319–320, 325–326
■ CC.8.G.4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	SE: 315–316, 317–318, 327–329, 330	SE: 319–320, 331–332, 332A–332B

Learning Goal 1: SWBAT recall and use rotations, reflection, and translations to produce congruent images.

Overview.

- Translations, rotations, and reflections produce a figure that is congruent to the original.
- Dilation produces a figure that is **similar** to the original.

In this module, you will apply transformations to points and shapes, and describe the transformations which map a shape onto its image.

Direct instruction.

- Translation
 - Determining a translation

- o <u>Translating a triangle</u>
- Reflection
 - Reflecting a point across the *x*-axis
 - Reflecting a quadrilateral across the x-axis
 - o Reflecting across a diagonal.
- Rotation
 - Rotating points
 - Rotating shapes

Additional learning materials.

Independent practice.

Student Book: p.310: #5

Application activity.

Consider each of the following questions, then write your answer in the discussion forum. Explain your thinking clearly.

Sophie makes the following statement:

"A 270° rotation is the same as a 90° rotation."

Do you agree or disagree with Sophie's statement? Explain.

The point (-a, b) undergoes a rotation of 90° about the origin and moves to the point (b, a). Was the point rotated clockwise or counterclockwise? Explain how you arrived at your answer.

Discussion forum.

Check for understanding.

Rectangle *QRST* is translated, and point Q' (the image of Q) has coordinates (-6, -1).

If the coordinates of the original vertices are Q(-8, 4), R(-8, 2), S(-3, 2), and T(-3, 4), what are the coordinates of T?

- a. (-5, 9)
- b. (-1, -1)
- c. (-1, 9)
- d. (-8, 2)

 ΔDEF , shown at right, is translated and the coordinates

of F' (the image of F) are (2, -8). Find the coordinates of D'.

b.
$$(1, -8)$$

c.
$$(-8, 1)$$

d.
$$(-4, -3)$$

Find the image of B (0, -3) after a 90° clockwise rotation about the origin.

The point X (3, 6) is translated -7 units vertically and 3 units horizontally, then reflected in the line y = 0. Which of the following will be the coordinates of X", the image of X, after this translation?

a.
$$(-4, -9)$$

a.
$$(-4, -9)$$
 b. $(6, 1)$ **c.** $(-6, -1)$ **d.** $(4, 9)$

(Student Reflection)

Data + learning reflection

(Additional resources)

If need additional support

Learning Goal 2: SWBAT compare two-dimensional figures and describe the transformation that exhibits the similarity between them

Overview.

• Translations, rotations, and reflections produce a figure that is **congruent** to the

- original.
- Dilation is a transformation which preserves the shape of the original figure, but changes its size. You can think of it almost like a "zoom in/out" feature, which enlarges or reduces the figure.
- The **center of dilation** is the fixed point where the lines connecting corresponding parts of the figure and its image intersect.
- The **dilation factor (scale factor)** describes how much the figure is enlarged or reduced.
- Dilation produces a figure that is **similar** to the original.

Direct instruction.

- <u>Dilations and properties (video)</u>
 - Dilations and their properties

Additional learning materials.

• Student book p. 317: Finding a scale factor.

Independent practice.

After Khan video:

- Khan Academy practice (properties of dilation)
- Khan Academy practice (scale factors)

After additional materials:

Student Book: p. 310: #2, #6Student Book: p. 317: #7, #8

Application activity.

Student Book: p. 319 (table at the bottom)

Discussion forum.

Check for understanding.

Critical Thinking A triangle has vertices A(-5, -4), B(2, 6), and C(4, -3). The center of dilation is the origin and $(x, y) \rightarrow (3x, 3y)$. What are the vertices of the dilated image?

In the diagram below, $\triangle AED \cong \triangle BEC$. Which transformation will map $\triangle AED$ onto $\triangle BEC$?

- **a.** Reflection over a horizontal line through point E.
- **b.** 90° clockwise rotation about point E.
- **c.** Reflection over a vertical line through point E.
- **d.** 180° clockwise rotation about point E.

(Student Reflection)
Data + learning reflection

Learning Goal 3: SWBAT compare two-dimensional figures and describe the sequence of transformations

Overview

In this module you will apply multiple transformations to assess whether two 2-dimensional figures are similar or different. In this module you will...

- Watch a video demonstrating how you can do multiple transformations
- Practice stacking transformations
- Apply this knowledge to make comparisons
- Practice in Khan academy

Direct instruction

Key terms:

- Copy all of the ones from Goals 1-2
- Similar: two figures are similar if you can obtain one shape from a series of transformations from the other.
- Congruent: two figures which are same shape and same size are called congruent.

Key point: in this module you will work to compare two shapes and identify if they are similar or congruent by applying multiple transformations.

Example: are these shapes similar? What transformations did you have to apply?

Practice #1
Go MathPersonal Math Trainer 10.1

Δ ABC is translated according to $(x-5,y+10)$ and then translated again by the vector $(x+3,y-6)$. Find a <u>single</u> translation vector that will map Δ ABC onto Δ A"B"C". <u>Explain</u> how you found your answer.		
Discussion.		
Segment \overline{MN} has endpoints M (3, -5) and N (-2, -2). Find the coordinates of $\overline{M''N''}$, the image of \overline{MN} after it has been reflected over the line $y=x+2$, and then translated according to $(x+5,y-3)$		
If the transformations were performed in the reverse order (that is, if the translation were performed <i>first</i> and the reflection <i>second</i>) would $\overline{M''N''}$ have the same coordinates? Justify or explain your answer.		
Formative Assessment Must get above a% to move on		
(Student Reflection) Data + learning reflection		
Additional learning materials: OER, curriculum, teacher made resources • Ideas, links and resources here		
Practice • Math problems or a practice passage or something similar		
Application activity Higher-order thinking/problem solving		

Suppose we apply a dilation by a factor of 2, centered at the point P, to the figure below.

- a. In the picture, locate the images A', B', and C' of the points A, B, and C under this dilation.
- b. Based on your picture in part (a), what do you think happens to the line I when we perform the dilation?
- c. Based on your picture in part (a), what appears to be the relationship between the distance A'B' and the distance AB? How about the distances B'C' and BC?
- d. Can you prove your observations in part (c)?

http://tasks.illustrativemathematics.org/content-standards/tasks/602

(Discussion forum)

Related to the application activity

Formative Assessment

Must get above a __% to move on

(Student Reflection)

Data + learning reflection

(Additional resources)

If need additional support

POST ASSESSMENT