
Exploring Similar Solids

Benchmark

- **9.3.1.3** Understand that quantities associated with physical measurements must be assigned units; apply such units correctly in expressions, equations and problem solutions that involve measurements; and convert between measurement systems.
- **9.3.1.4** Understand and apply the fact that the effect of a scale factor k on length, area and volume is to multiply each by k, k^2 and k^3 , respectively.

Essential Question: If two solids have a similarity ratio of a/b, can I find the ratio of their surface areas and volumes?

Learning Targets:

I can... Find the relationship of surface areas and volumes in similar solids

Warm Up

- 1. We know that every circle is similar. Is every sphere similar?
- 2. Find the volume of a sphere with a 12 in radius. Leave your answer in terms of π .
- 3. Find the volume of a sphere with a 3 in radius. Leave your answer in terms of π .
- 4. Two squares have a scale factor of 2:3. What is the ratio of their areas?
- 5. The smaller square from #4 has an area of $16\ cm^2$. What is the area of the larger square?