
Installation + Setup:
-​ Python Setup 3.9 currently works for docking (if needed, setup a conda environment with

python 3.9 version specified):
-​ pip install scipy and numpy
-​ Blastermaster will fail if you don’t have the proper dependencies and will probably

fail if you don’t have a compatible python version

-​ Install dock from http://dock.compbio.ucsf.edu/
-​ If you have access to umms-maom/turbo directory, you can use DOCK from there so

you won’t need to install it

-​ Follow the instructions here https://github.com/momeara/dock_campaign_template to
clone the dock campaign template (usually in /your_home_dir/opt) and then set up a
working directory for your dock campaign

-​ After the working directory is setup, follow the instructions to initialize the shell
environment in working directory

-​ Once the environment is set up, edit the script setup_dock_environment.sh:

-​ Fields highlighted in yellow are ones that you will need to fill in but they should be
the same as listed here. Fields in red are ones that are personalized to your
setup and file paths. The export SLURM lines will need to be uncommented

-​ Make sure your scratch directory actually exists
-​ This script sets up all the paths and slurm stuff needed to run the docking scripts

supported cluster types:

LOCAL, SGE, SLURM

export USE_SLURM=true

export CLUSTER_TYPE=SLURM

use these options for SLURM clusters

export SLURM_ACCOUNT=maom0

export SLURM_MAIL_USER=email

export SLURM_MAIL_TYPE=BEGIN,END

export SLURM_PARTITION=standard

export SCRATCH_DIR=/scratch/maom_root/maom0/scratch_directory

export DOCK_TEMPLATE=path_to/dock_campaign_template

export DOCKBASE=${HOME}/turbo/opt/DOCK-dev/ucsfdock #(this is the current version I have

working)

the DOCKBASE folder should contain files and folders that look like this:

analysis, bin, common, docking, install, ligand protein, files.py, util.py, __init__.py

export PATH="${PATH}:${DOCKBASE}/bin:${DOCK_TEMPLATE}/scripts"

export ZINC3D_PATH=" ${HOME}/turbo/ZINC_mirror/published/3D" #(this is the current path to the

zinc database files)

http://dock.compbio.ucsf.edu/
https://github.com/momeara/dock_campaign_template

to build molecules for zinc (WIP)

#https://comp.chem.umn.edu/sds/amsol/amsol7.1.tar.xz

#with co-linear patch

export AMSOLEXE=${HOME}/opt/amsol7.1-colinear-fix/amsol7.1

export EMBED_PROTOMERS_3D_EXE=$DOCKBASE/ligand/3D/embed3d_corina.sh

export OMEGA_ENERGY_WINDOW=12

export OMEGA_MAX_CONFS=600

-​ Run source setup_dock_environment.sh to setup the docking environment. Note: you will

have to run this every time you open a new shell for docking (you will get an error if you
don’t)

DOCKing:
Preparing the database:

-​ To dock, you will need a database.sdi file containing db2.gz file paths on each line. These
files contain the ligands to be docked to your receptor. To get this database.sdi file there
are two different docking situations (retrospective and prospective) requiring different
steps

-​ Retrospective: Collect db2 ligand files by first collecting a list of active smiles strings
(from pubchem or similar databases).

-​ Go to https://tldr.docking.org/ and generate actives and decoys db2 files from
your file containing the active molecules smiles strings (one string per line)

-​ Download the db2.gz files and put them somewhere where you can access them
from your docking directory

 ​
-​ Prospective: There are already sdi files containing db2.gz files of ligands from the ZINC

database in /nfs/turbo/umms-maom/ZINC_mirror/tranches
-​ If you use one of the sdi files from this directory, copy the file to a directory in

your databases directory of your dock campaign directory. I like to name the sdi
file database.sdi because it matches the name that DOCK looks for when docking

-​ If the database.sdi file does not already exist (usually the case when you set up your own

database for retrospective docking), set up a database.sdi file in the databases directory
containing paths to the db2.gz ligand db2 files by:

-​ The database.sdi file can be written with the following command
-​ ls -d path_to_db2_files/*.db2.gz > database.sdi

-​ You should put this database.sdi file in a descriptively named directory
within the databases directory of your dock campaign working directory
(e.g. path_to_dock_dir/databases/ZINC_instock/database.sdi)

https://tldr.docking.org/

Making the structure:
-​ Once you have a database of ligands set up, run $DOCK_TEMPLATE/scripts/wizard.sh (the

wizard script always needs to be run from your home dock directory) in your dock
campaign directory

-​ When prompted, choose the ‘Make Structure’ option then choose
TEMPLATE_CUSTOM_PDB option and name the structure. Note: the date will
automatically be added to whatever name you give)

-​ After this step, a directory in the structures directory is created with the name you gave.

This directory contains a file 1_make_structure.sh which you will need to edit

-​ If the pdb is in the Protein DataBank, fill in the lines highlighted in yellow
-​ If the pdb is not in the Protein DataBank (e.g. designed) or if you already have

the structure in the directory, you can comment out the starred lines (****) and
add the line highlighted in red. This creates a link from the structure to raw.pdb

fill in

PDB_CODE= ****

RECEPTOR_CHAIN=

LIGAND_CHAIN=

LIGAND_RESID=

wget https://files.rcsb.org/download/${PDB_CODE}.pdb ****

mv ${PDB_CODE}.pdb raw.pdb ****

ln -s pdb_name.pdb raw.pdb

grep "^ATOM.................${RECEPTOR_CHAIN}" raw.pdb > rec.pdb

grep "^HETATM...........${LIGAND_RESID} ${LIGAND_CHAIN}" raw.pdb > xtal-lig.pdb

echo "N atoms in rec.pdb: $(wc -l < rec.pdb)"

echo "N atoms in xtal-lig.pdb: $(wc -l < xtal-lig.pdb)"

-​ Once you edit this file, run source 1_make_structure.sh

-​ This will output a pdb file containing the receptor atoms (rec.pdb) and a pdb file
containing the ligand atoms (xtal-lig.pdb)

-​ Make sure to check that the ligand and receptor pdb files are not empty
-​ Note: if your protein does not have an endogenous ligand, you can predict the

binding site using DiffDock​

Preparing the structure:
-​ Return back to the main directory of your dock campaign and run the wizard.sh script

again ($DOCK_TEMPLATE/scripts/wizard.sh) but this time select the ‘Prepare structure’
option → choose the structure you’d like to prepare (the one you just made using the
‘Make structure’ option)

-​ Choose the TEMPLATE_STANDARD option (if you have the rec.pdb and xtal-lig.pdb

already generated from previous step)
-​ This sets up a directory in the prepared_structures directory with a file called

1_prepare_structure.sh

-​ cd into this directory and edit the 1_prepare_structure.sh file (this file shouldn’t
really need editing if the previous steps have worked correctly)

-​ Run the script by source 1_prepare_structure.sh and make sure that the output
states that the job is submitted. Check to see if blastermaster is running by using
the command sq

-​ Blastermaster creates the grids (electrostatic, van der waals, and desolvation
grids) and spheres (receptor and ligand spheres) that will be used for scoring and
docking poses during the docking run

-​ Once blastermaster has finished, make sure a dockfiles directory is generated in the

directory containing the 1_prep_structure.sh file and that dockfiles contains a file called
INDOCK. If the dockfiles directory or INDOCK file does not exist, look at the error logs in the
working directory to determine the error

-​ Open the INDOCK file and edit as needed – this is the file that controls parameters for
docking (like max energy, max ligand size, etc.)

-​ To ensure that all ligands are docked for prospective docking, increase the
bump_maximum, bump_rigid, and mol2_score_maximum, as well as the
atom_maximum (usually I set these four values to 100)

-​ There are other parameters that can be changed but these are the ones that I
typically change

Doing the docking:
-​ If blastermaster ran correctly and the INDOCK file is edited as necessary, cd back into the

main working directory of you dock campaign and run the wizard script again
($DOCK_TEMPLATE/scripts/wizard.sh) → choose the ‘Docking run’ option → choose the
database you would like to use → select your prepared structure → choose the
TEMPLATE_STANDARD template → name the docking run (default format is nice so
you can leave this blank if you want)

-​ This creates a directory in the docking_runs directory named by the docking run tag which

contains a file called 1_submit.sh
-​ cd into this directory, edit the file, then run it by source 1_submit.sh. This should

start the docking run (check sq to make sure it is running) – this will probably fail
at first, but follow the steps below for fixing the errors

When running dock, the docking will originally fail because of a path error in your scratch
directory. To fix this, cd into your scratch directory and mkdir DOCK_common

EDITING DOCK_SUBMIT.SH:
NOTE: when running 1_submit.sh, some of the paths are not correct in the dock_submit.sh file.

-​ To fix this, make a copy of ${DOCK_TEMPLATE}/scripts/dock_submit.sh in your own docking
directory. You will need to change the path in 1_submit.sh to this path (e.g. you will need
to change it to /path_to_docking_dir/dock_submit.sh . Note that you will need to change
this path in 1_submit.sh every time you use wizard to do docking

-​ In your own version of dock_submit.sh, you should edit the file to look something like

below: green are lines that need to be added, red are lines that need to be changed from
the original.

#!/bin/bash

this is just $DOCKBASE/docking/submit/submit.csh

but saves the SGE job id to submit.pid

#$DOCKBASE/docking/submit/subdock.csh $DOCKBASE/docking/DOCK/bin/dock.csh

#if [! -f "dirlist"]; then

echo "Error: Cannot find dirlist, the list of subdirectories!"

echo "Exiting!"

exit 1

#fi

if [[${CLUSTER_TYPE} = "SGE"]]; then

 DIRNUM=$(wc -l dirlist)

 SUBMIT_JOB_ID=$(qsub \

 -terse \

 -t 1-$DIRNUM \

 $DOCKBASE/docking/submit/rundock.csh \

 $DOCKBASE/docking/DOCK/dock.csh)

 echo "Your job-array ${SUBMIT_JOB_ID}.1-${DIRNUM}:1 (\"rundock.csh\") has been submitted"

 echo "Saving SGE job id to submit.pid"

 echo $SUBMIT_JOB_ID > submit.pid

elif [[${CLUSTER_TYPE} -eq "SLURM"]]; then

 # check if variables are defined

 # if the ${DOCKFILES} directory is writable, then create .shasum in in it

 # for each file in database.sdi

 # if OUTDOCK.0 or test.mol2.gz.0 doesn't exist, add it to the joblist

 # call sbatch on rundock.bash

 export USE_DB2=true

 export USE_DB2_BATCH_SIZE=1

 export USE_DB2_TGZ=false

 export INPUT_SOURCE=$(readlink -f $1)

 export DOCKFILES=$(readlink -f $2)

 export EXPORT_DEST=$(readlink -f $3)

 export USE_SLURM=true

 export DOCKEXEC=${DOCKBASE}/docking/DOCK/dock64

 export SHRTCACHE=${SCRATCH_DIR}

 export LONGCACHE=${SCRATCH_DIR}

 export SBATCH_ARGS="--account=${SLURM_ACCOUNT} --mail-user=${SLURM_MAIL_USER}

--mail-type=${SLURM_MAIL_TYPE} --partition=${SLURM_PARTITION}"

 DOCKFILES_COMMON=${SCRATCH_DIR}/DOCK_common/dockfiles.$(cat ${DOCKFILES}/* | sha1sum | awk

'{print $1}')

 echo "Copying dockfiles to '${DOCKFILES_COMMON}'"

 cp -r ${DOCKFILES} ${DOCKFILES_COMMON}

 # njobs=$(wc -l dirlist)

 # sbatch ${SBATCH_ARGS} --signal=B:USR1@120 --array=1-${njobs}

${DOCKBASE}/docking/submit/slurm/rundock.bash

 bash ${DOCKBASE}/docking/submit/subdock.bash

 echo "Check status with: squeue | grep -e \"$(whoami)\" -e \"rundock\""

else

 echo "Unrecognized cluster type '${CLUSTER_TYPE}'"

fi

-​ Make sure that the docking ran correctly by cd into the results directory and viewing one

of the test.mol2.gz.0 files. The file should be a binary file but should not contain just one
line. If something ran incorrectly, you can check the log files to determine what the error
was

Changing dock parameters:
-​ Editing the dock submit parameters:

-​ To control the batch size of your docking runs (for example if you are docking
multiple receptors at once and don’t want to exceed job limit) you can edit the
dock_submit.sh file to increase or decrease the batchsize as necessary (make
sure to make a copy of this file in your own directory and only edit that one)

Analyzing the docking results:
-​ Once docking is complete, you need to analyze the results by:
-​ cd into the directory where the docking was run (the one that contains the results

directory)
-​ Use ls -d results/* > dirlist to make a file called dirlist
-​ Remove all the items from the dirlist except for the directories containing the

test.mol2.gz.0 files … i write a shell script for cleaning the dirlist files, something like:

#!/bin/bash

sed -i '/file_list/d' dirlist

sed -i '/joblist/d' dirlist

sed -i '/logs/d' dirlist

-​ Once the dirlist is created and cleaned, run

python $DOCKBASE/analysis/extract_all_blazing_fast.py dirlist extract_all.txt 100

-​ The highlighted stuff is what you will need to give as arguments (dirlist, name of
file to be written (extract_all.txt), and max energy to accept (should match the
energy cutoff in INDOCK)

-​ This will output three files containing the energy scores for the docked poses in
your results directory. The one that you probably want is the
extract_all.sort.uniq.txt file. This is a file that contains the unique docked poses
sorted by total energy (lowest energy → highest scoring poses)

-​ After running the extract python script, you should then run the script to get the mol2 files

of the docked poses:
python $DOCKBASE/analysis/getposes_blazing_faster_py3.py '' extract_all.sort.uniq.txt 1000000

poses.mol2 test.mol2.gz.0

-​ The highlighted things are the arguments you need to provide: the directory

where docking is located, type ‘’ if you are in the docking directory, the file you
want to get poses from (usually the extract_all.sort.uniq.txt file), the number of
poses to get (set to a large number if you want to get all the poses), the name of
the mol2 file to write, and the name of the mol2 files in the results directory
(usually test.mol2.gz.0)

-​ This script outputs a poses.mol2 file that contains all the docked poses. You can
then view these poses docked to the receptor in pymol or chimera by opening the
rec.pdb and poses.mol2 file together

-​ For choosing docking hits, I usually choose the lowest 1% total energy poses
(lower energy = better scoring) as ligands that are docked and the remaining
99% I classify as non-docking

Helpful scripts:
-​ I made a directory in turbo called turbo/scripts_forDOCKing that has some helpful scripts

for docking many receptors and ligands. You can also look in
turbo/MPProjects/chemical_space/dock_dev/ for more scripts for batch docking and example
docking runs

	Installation + Setup:
	DOCKing:
	Preparing the database:
	Making the structure:
	Preparing the structure:
	Doing the docking:
	Changing dock parameters:
	Analyzing the docking results:
	Helpful scripts:

