
Article 1: Develop Smart Contracts Using Rust

For the development of smart contracts in NEAR blockchain, Rust programming
language is recommended. Rust's emphasis on performance and safety are the
most important reasons for this choice. Further, Rust does not have any garbage
collector which makes sure that no indeterministic factor comes into account which
is very important for smart-contract development.

For setting up basic Skelton and installing related tools, please refer to the URL,
https://www.near-sdk.io/

NEAR ecosystem provides all the decorators for serialization-deserialization,
near-bindgen, etc., and the libraries to convert the code written in RUST language
into a format compatible for deployment to the NEAR blockchain. For the structure
of the contract, please refer to the link, https://www.near-sdk.io/#!

Further, the NEAR guides provide an interface that can be followed to code a smart
contract in the right way. There are different method types: public methods, private
methods, payable methods, etc. Mutability is a very important part of the rust
language. It provides the much-needed safety for contract writing. To understand
this further, please refer to the link,
https://www.near-sdk.io/contract-interface/public-methods

An important feature of the NEAR blockchain is its asynchronous nature. This can
be tricky for developers who are new to NEAR blockchain. The NEAR guides have
specifically explained how promises and cross-contact calls work in the NEAR
blockchain. Since it is not mandatory that NEAR transactions are executed within
one block, proper care needs to be taken care while calling those cross-contract
calls which may fail. Basically, if some asynchronous call is failing then the structure
of all the accounts should be reset.

Further, the NEAR guides provide the best-practices document,
https://www.near-sdk.io/best-practices. It is one of the most important documents

https://www.near-sdk.io/
https://www.near-sdk.io/#
https://www.near-sdk.io/contract-interface/public-methods
https://www.near-sdk.io/best-practices

to understand the contract structure as well as to follow the best standard to avoid
some well-known pitfalls.

Article 2: Architecture and Basic Concepts

The structure of a NEAR node consists roughly of a blockchain layer and a runtime

layer. These layers are designed to be independent of each other: In theory, the

blockchain layer can support runtimes that process transactions differently, have a

different virtual machine (e.g. RISC-V), and has different fees. On the other hand,

the runtime is oblivious to where the transactions are coming from; it is not aware

whether the blockchain it runs on is sharded, what consensus it uses, and whether

it runs as part of a blockchain at all.

The blockchain layer and the runtime layer share the following components and

invariants:

Transactions and Receipts

Transactions and receipts are fundamental concepts in the Near Protocol.

Transactions represent actions requested by the blockchain user, e.g. sending

assets, creating accounts, executing a method, etc. Receipts are an internal

structure; a receipt is a message that is used inside a message-passing system.

Transactions are created outside the NEAR Protocol node, by the user who sends

them via RPC or network communication. Receipts are created by the runtime from

transactions or as the result of processing other receipts.

Blockchain layerS cannot create or process transactions and receipts, it can only

manipulate them by passing them around and feeding them to a runtime.

Account-Based System

Similar to Ethereum, Near Protocol is an account-based system. This means that

each blockchain user is roughly associated with one or several accounts (there are

exceptions though when users share an account and are separated through the

access keys).

The runtime is essentially a complex set of rules on what to do with accounts based

on the information from the transactions and the receipts. It is therefore deeply

aware of the concept of account.

The blockchain layer however is mostly aware of the accounts through the trie (see

below) and the validators (see below). Outside these two it does not operate on the

accounts directly.

Assume every account belongs to its own shard

Every account in the NEAR protocol belongs to some shard. All the information

related to this account also belongs to the same shard. The information includes:

●​ Balance

●​ Locked balance (for staking)

●​ Code of the contract

●​ Key-value storage of the contract

●​ All Access Keys

Runtime assumes it's the only information that is available for the contract

execution. While other accounts may belong to the same shards, the runtime never

uses or provides them during contract execution. It is assumed that every account

belongs to its own shard and there is no reason to intentionally try to collocate

accounts.

Trie

NEAR Protocol is a stateful blockchain — there is a state associated with each

account and the user actions performed through transactions mutate that state.

The state then is stored as a trie, and both the blockchain layer and the runtime

layer are aware of this technical detail.

The blockchain layer manipulates the trie directly. It partitions the trie between the

shards to distribute the load. It synchronizes the trie between the nodes, and

eventually, it is responsible for maintaining the consistency of the trie between the

nodes through its consensus mechanism and other game-theoretic methods.

The runtime layer is also aware that the storage that it uses to perform the

operations on is a trie. In general, it does not have to know this technical detail and

in theory, we could have abstracted out the trie as generic key-value storage.

However, we allow some trie-specific operations that we expose to the smart

contract developers so that they utilize Near Protocol to its maximum efficiency.

Tokens and gas

Even though tokens are a fundamental concept of the blockchain, it is neatly

encapsulated inside the runtime layer together with the gas, fees, and rewards.

The only way the blockchain layer is aware of the tokens and the gas is through the

computation of the exchange rate and the inflation which is based strictly on the

block production mechanics.

Validators

Both the blockchain layer and the runtime layer are aware of a special group of

participants who are responsible for maintaining the integrity of the Near Protocol.

These participants are associated with the accounts and are rewarded accordingly.

The reward part is what the runtime layer is aware of, while everything around the

orchestration of the validators is inside the blockchain layer.

Blockchain Layer Concepts

Interestingly, the following concepts are for the blockchain layer only and the

runtime layer is not aware of them:

●​ Sharding — the runtime layer does not know that it is being used in a

sharded blockchain, e.g. it does not know that the trie it works on is only a

part of the overall blockchain state;

●​ Blocks or chunks — the runtime does not know that the receipts that it

processes constitute a chunk and that the output receipts will be used in

other chunks. From the runtime perspective it consumes and outputs

batches of transactions and receipts;

●​ Consensus — the runtime does not know how the consistency of the state is

maintained;

●​ Communication — the runtime doesn't know anything about the current

network topology. The receipt has only a receiver_id (a recipient account), but

knows nothing about the destination shard, so it's a responsibility of a

blockchain layer to route a particular receipt.

Runtime Layer Concepts

●​ Fees and rewards — fees and rewards are neatly encapsulated in the

runtime layer. The blockchain layer, however, has an indirect knowledge of

them through the computation of the tokens-to-gas exchange rate and the

inflation.

To dive deeper into the tech which underpins NEAR Protocol, check out the White
Paper here. If you’re a developer and would like to learn how to build on NEAR,
check out the technology section of the Wiki, or head to our technical
documentation.

Article 3: Use-Cases

Decentralized Finance (DeFi)
An open alternative to the current financial system that transcends borders.

Learn more about DeFi

Non-fungible Tokens (NFTs)

https://near.org/papers/the-official-near-white-paper/
https://wiki.near.org/technology
https://docs.near.org/docs/develop/basics/getting-started
https://docs.near.org/docs/develop/basics/getting-started
https://near.org/use-cases/defi/

A way to represent anything as a unique asset and manage its ownership.

Learn more about NFTs

Decentralized Autonomous Orgs (DAOs)
A new way to organize, fund, and empower communities that is democratic by
default.
Learn more about DAOs

https://near.org/use-cases/nft/
https://near.org/use-cases/dao/

	Article 1: Develop Smart Contracts Using Rust
	Article 2: Architecture and Basic Concepts
	Transactions and Receipts
	Account-Based System
	Assume every account belongs to its own shard

	Trie
	Tokens and gas
	Validators
	Blockchain Layer Concepts
	Runtime Layer Concepts

	Article 3: Use-Cases
	Decentralized Finance (DeFi)
	An open alternative to the current financial system that transcends borders.
	Non-fungible Tokens (NFTs)
	A way to represent anything as a unique asset and manage its ownership.
	Decentralized Autonomous Orgs (DAOs)

