
Dynamic filesystem management

In this guide you will learn how to configure dynamic folder creation, automate file naming, and
automate saving files to the appropriate place in your filesystem. You will also learn how to add
a custom entity to your projects configuration that facilitates adding a new folder to the
supported filesystem and adding a new variable to the file naming.

About the Guide

We understand that one of the hardest things about managing a pipeline is keeping track of the
thousands of files that are created. This guide will provide the knowledge necessary to modify a
project’s configuration in a way that allows for Toolkit to automatically create the proper folder
structure, name your files, keep track of versioning, and allow apps running on Toolkit to
manage saving and retrieving them.

This guide will demonstrate how to edit configuration settings that Toolkit apps use to manage
and track elements associated with a production set. There are several scenes in a dining room,
a living room, and outdoor scenes. The goal is to add an entity in the project’s configuration and
use this entity to manage and name all the assets created for any identified set. This will enable
Toolkit to dynamically build the folder structure you specify for the assets in the dining room,
living room, or any set, and put the assets where you want them, automatically naming them
according to the format you choose. It’s important for large productions to organize 3D elements
in a way that makes sense for that production. This exercise will create a separate folder
structure for the 3D elements in the dining room, distinguishing them from elements in the living
room or any of the outdoor scenes. The name of the file will be dynamically created using the
set entity to distinguish files for the dining room from files used in other sets. You will edit a
pipeline configuration that allows a Maya Shotgun integration to dynamically do all that.

There are three parts to this guide:

1.​ Creating a custom entity in Shotgun called Set that you will use to associate with the
dining room elements the artists are creating.

2.​ Editing the schema enabling Toolkit to dynamically create the folder structure used to
save the files associated with the dining room.

3.​ Editing the template used for naming the 3D dining room asset work files, enabling
Toolkit to name the associated files.

Prerequisites

To use this guide and perform an edit on a pipeline configuration, the following is required:

1. An active [Shotgun](https://www.shotgunsoftware.com/signup/) site.

2. A basic understanding of how a Shotgun site is used to [manage
assets](https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-c
reate-and-track-things).
3. A cloned pipeline configuration for the identified project, or complete the [Getting started with
configurations](./advanced_config.md) guide and clone the configuration created in that
exercise.
4. [Shotgun
Desktop](https://support.shotgunsoftware.com/hc/en-us/articles/115000068574-Integrations-use
r-guide#Installation%20of%20Desktop) installed on your system.
5. Familiarity with YAML, Toolkit uses YAML files for configuring Shotgun integration settings.
Read and write permissions set appropriately for the filesystem where the Pipeline
Configuration is stored.
6. An active subscription for Maya. Get a 30 day trial of
[Maya](https://www.autodesk.com/products/maya/free-trial-dts?adobe_mc_ref=https%3A%2F%
2Fwww.google.com%2F&adobe_mc_sdid=SDID%3D577C0A84DDF5D35D-50E96EA2052056
FE%7CMCORGID%3D6DC7655351E5696B0A490D44%2540AdobeOrg%7CTS%3D15434446
89)
7. A solid understanding of how to create a [new
task](https://support.shotgunsoftware.com/hc/en-us/articles/219031288-Tasks-and-Pipeline-Ste
ps) for a 3D model asset in Shotgun.
8. Read and write permissions set appropriately to allow Toolkit to read and write to the
production filesystem.

{% include info title="Note" content="This guide is based on the `tk-config-default2` pipeline
configuration. If your config was modified, the location of files, folders, and blocks of YAML
settings may vary from what is described here." %}

Additional Resources

* [Shotgun Support Site](https://support.shotgunsoftware.com)

* [App and Engine Configuration
Reference](https://support.shotgunsoftware.com/hc/en-us/articles/219039878-App-and-Engine-
Configuration-Reference)
Using this guide

* [Shotgun
entities](https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to
-create-and-track-things)

* [The
schema](https://support.shotgunsoftware.com/hc/en-us/articles/219031358-Shotgun-schema)

https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-create-and-track-things
https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-create-and-track-things
https://support.shotgunsoftware.com/hc/en-us/articles/219031288-Tasks-and-Pipeline-Steps
https://support.shotgunsoftware.com/hc/en-us/articles/219031288-Tasks-and-Pipeline-Steps
https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-create-and-track-things
https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-create-and-track-things
https://support.shotgunsoftware.com/hc/en-us/articles/219031358-Shotgun-schema

* Filesystem
reference](https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-Sy
stem-Reference#The%20Keys%20Section)

About file schemas and templates

The filesystem schema and templates provided in the [Default
Configuration](https://support.shotgunsoftware.com/hc/en-us/articles/115004077494-Overview-o
f-Toolkit-s-New-Default-Configuration-) are the building blocks that allow you to take advantage
of the Shotgun architecture for managing project based elements as
[entities](https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-t
o-create-and-track-things): **Asset, Sequence, and Shot.** These building blocks facilitate
creating an automated system for managing files and folder creation associated with entities.
Other entities such as **Character**, gaming **Level**, fx asset and Set can be added.

The Toolkit platform allows you to build your folder structure dynamically by utilizing a skeleton
of the filesystem you want to create. The
[schema](https://support.shotgunsoftware.com/hc/en-us/articles/219031358-Shotgun-schema)
demonstrates how entities relate to other data and how the data is going to be organized in the
filesystem. The schema is an explicit guide that Toolkit accesses enabling the dynamic creation
of folders. It’s the skeleton of a folder structure that uses YAML files to determine what folders to
create and how they relate to each other. The Default Configuration includes a pre-configured
schema that supports folder creation for both asset and shot pipelines. You will be modifying the
portion of the schema that supports creating the asset folder structure,
`/assets/<asset_type>/<asset>/<step>`, to add support for the new **Set** entity you’re
creating.

The
[templates](https://support.shotgunsoftware.com/hc/en-us/articles/219040648#File%20System
%20Template) allow you to dynamically name and save files as they’re created using Shotgun
metadata, data from the app being used to save the file and information from the schema
structure. The templates are also used by apps to retrieve and publish files. The Default
Configuration provides templates you can edit to meet the needs of your pipeline.

The Basic Configuration doesn’t have the schema or templates for managing files and
filesystems. The first guide, [Getting started with configurations](./advanced_config.md),
discussed the difference between the [Basic
Configuration](https://support.shotgunsoftware.com/hc/en-us/articles/115000067493-Integration
s-Admin-Guide#The%20Basic%20Config), that is used when a new project is accessed through
Shotgun Desktop and the [Default
Configuration](https://support.shotgunsoftware.com/hc/en-us/articles/115004077494-Overview-o
f-Toolkit-s-New-Default-Configuration-), that’s used with the Advanced Project Setup Wizard.
Using the Default Configuration will give you a set of building blocks including settings for a

https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Keys%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Keys%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/115004077494-Overview-of-Toolkit-s-New-Default-Configuration-
https://support.shotgunsoftware.com/hc/en-us/articles/115004077494-Overview-of-Toolkit-s-New-Default-Configuration-
https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-create-and-track-things
https://support.shotgunsoftware.com/hc/en-us/articles/219031098-Using-the-importer-to-create-and-track-things
https://support.shotgunsoftware.com/hc/en-us/articles/219040648#File%20System%20Template
https://support.shotgunsoftware.com/hc/en-us/articles/219040648#File%20System%20Template
https://support.shotgunsoftware.com/hc/en-us/articles/115000067493-Integrations-Admin-Guide#The%20Basic%20Config
https://support.shotgunsoftware.com/hc/en-us/articles/115000067493-Integrations-Admin-Guide#The%20Basic%20Config
https://support.shotgunsoftware.com/hc/en-us/articles/115004077494-Overview-of-Toolkit-s-New-Default-Configuration-
https://support.shotgunsoftware.com/hc/en-us/articles/115004077494-Overview-of-Toolkit-s-New-Default-Configuration-

default schema, templates, and many other settings that allow for more ease when extending
configurations for a Toolkit pipeline.

Begin exercise

Configuring a schema and templates will allow you to dynamically manage the files generated
when creating the dining room set: a place setting, a steaming hot Filet Mignon, a bottle of
Penfolds Grange Hermitage 1951, potatoes au gratin, lemon garlic asparagus, etc... The files
for the dining room set will be associated with the dining room set entity enabling you to manage
them more easily. Set is not an entity type that comes standard with the Default Configuration,
so you need to create a custom entity called Set as well as extending the schema and
templates necessary to automatically manage, link and save the files for the dining room set.

For more clarification, using an “entity” allows you to make the association in Shotgun, “Set” is
the name of the entity type you’re creating, and “Dining Room” is the proper name you will be
giving the Set entity type.

Creating a custom entity

Step 1: Open the Shotgun site with access to the the_other_side project, or the project you
will be using for this exercise. Click on your avatar and go to ADMIN > Site Preferences then
select the arrow next to Entities to open the dialog box.

(../../../../images/toolkit/learning-resources/guides/ ??)

Displayed is a list of entity types that are available in Shotgun. At the top of the list in the image
below are some entity types that are configured for the current Shotgun site. Underneath these
entity types are several **Custom Entities** that are not configured or enabled.

Choose one of the custom entity types, configure it, and enable it.

(../../../../images/toolkit/learning-resources/guides/ ??)

Step 2: Select the arrow to open the settings on a grayed out disabled custom entity. Select
the radio button next to **Yes, use Custom Entity…**, change the **Display name** to **Set**
then scroll to the top of the window and select Save Changes.

(../../../../images/toolkit/learning-resources/guides/ ??)

This gives that custom entity the display name *Set* and makes that entity active and enabled
in Shotgun. Essentially you are creating an alias for the custom entity because the system name
of the entity remains `CustomEntity01`. In this pipeline configuration, `CustomEntity01` is used
for the settings, you might be using a different custom entity.

{% include info title="Note:" content="Remember the system name of the custom entity you
chose." %}

Add the data field used to associate assets with the dining room set

Step 3: Select the **Projects** drop down at the top of the page to open the project you
want to use for this exercise.

Step 4: Select **Assets** in your project menu bar. In the Assets menu select **Fields >
Manage Asset Fields…**

Adding a data field to the Asset entity enables the ability to associate specific assets with the
new entity. The assets the artists create for the dining room will be associated with the **Dining
Room** set entity.

This action displays the asset field manager

Select **+ Add a new field**

Select the parameters for the new field.

In **New Field Name** type Set. In the **GENERAL** menu under **Field Type** select
Entity and scroll down to **Restrict the type** to **Set**.

Select **Next**

For this guide, apply it to **Only the current project** and select **Create Field**.

Shotgun will configure the new field.

Your change has been applied and you can select **Done**.

Creating the **Dining Room** set entity

Step 5: Select the new **Set** field of an asset and start typing Dining Room.

A dialog box is displayed stating, **No matches found. Create “Dining Room”**

Select **Create “Dining Room”**

Select **Create Set**

Adding **Dining Room** in the Set field of an asset creates an
[association](https://support.shotgunsoftware.com/hc/en-us/articles/115000010973-Linking-a-cu
stom-entity) with the Dining Room set entity.

https://support.shotgunsoftware.com/hc/en-us/articles/115000010973-Linking-a-custom-entity
https://support.shotgunsoftware.com/hc/en-us/articles/115000010973-Linking-a-custom-entity

Step 6: Select the **Dining Room** link and add a task to create a Model asset called
filet and assign it to yourself, so you can find it easily for testing purposes.

Setting up the schema

You added a field to the asset for a set entity and created a dining room set. When a file is
created, Toolkit uses the associated asset fields and task fields to determine where the file will

be saved in the filesystem. New folders are created and named automatically while an artist is
working based on the schema structure detailed in a project configuration and files are named
based on other variables you will set later in this guide. For example: The first time an artist
creates a dining room asset for the new project `the_other_side`, all necessary folders are
created for that specific asset as they are outlined in the schema and the file is named
automatically created based on variables in the templates.

Let’s take a look at how this is done

First we will need a cloned configuration to play with. If you remember from the third guide,
[Adding an app](./installing_app.md), a cloned configuration was used as not to affect the
production configuration. The cloning process created a copy of the configuration that you
edited and tested then pushed to the live site. Here you can use that same clone and do the
changes in the copied configuration, then push it live once the changes are made. If you don’t
have a
[clone](https://support.shotgunsoftware.com/hc/en-us/articles/219033168-Configuration-staging-
and-rollout#Cloning%20your%20Configuration) of your configuration you can refer to the
[Adding an
app](./installing_app.md#clone-the-pipeline-configuration-you-want-to-add-an-app-to) guide for
how to create one.

Now it’s time to create the folder structure you want Toolkit to dynamically generate as an artist
steps through the production pipeline and files are created. This is done by using a skeletal
structure that mirrors the filesystem structure to be dynamically generated. The folders in the
skeleton contain variables for the folder names. These folder names are defined through
queries on Shotgun data.

Step 7: Navigate to the copy of the project configuration for the project where a set entity
type is to be used. Drill down to the schema folder, `<copy of project
configuration>/config/core/schema` and open the project folder.

https://github.com/shotgunsoftware/developer.shotgunsoftware.com/blob/master/docs/en/toolkit/learning-resources/guides/installing_app.md
https://support.shotgunsoftware.com/hc/en-us/articles/219033168-Configuration-staging-and-rollout#Cloning%20your%20Configuration
https://support.shotgunsoftware.com/hc/en-us/articles/219033168-Configuration-staging-and-rollout#Cloning%20your%20Configuration

The current schema, with this skeleton:

`<project>/assets/<asset_type>/<asset>/<step>`

Supports dynamically creating this filesystem structure:

`the_other_side/assets/prop/filet/MDL`

Here’s the structure you want to achieve on the filesystem for this project:

`the_other_side/assets/Dining-Room/Prop/filet/MDL`

To achieve this you would build the skeleton in the schema like this:

`<project>/assets/<CustomEntity01>/<asset_type>/<asset>/<step>`

The set entity is represented as `CustomEntity01`. In the first part of the guide you gave
CustomEntity01 the display name Set in the Shotgun site. You didn’t change the name of
CustomEntity01 in the system, so when setting up the folder schema you will use
`CustomEntity01`. What’s happening under the hood is still relative to CustomEntity01.

How the schema uses YAML files

There are static folders and dynamic folders, assets is the only static folder in this schema. The
YAML files contain the variables and instruction sets for Toolkit to determine the names of the
folders and which entities to create folders for. The YAML files are in the same folder as the
skeletal folders they affect and each dynamic folder has a YAML file associated with it. The
YAML file gives the instructions for determining the name of the folder and how folders relate to
each other. So, how do they know they’re connected? A Toolkit algorithm reads the YAML files
based on the hierarchy of the schema folder structure. The algorithm determines the
relationship of the information using the hierarchy of the skeletal folders and the YAML files.
Toolkit determines the name of each folder by looking at the fields in the Shotgun data as
specified by the YAML files.

 ### Create the new folder and YAML file for the Set entity

The schema has a `project` folder that contains folders relative to the different entities Shotgun
tracks. You are adding the new asset entity, CustomEntity01, to enable Shotgun to track the
items in a Set. These items are assets, so you will edit the folders and YAML files under assets.

Step 8: Add a `CustomEntity01` folder inside the `project/assets/asset_type/asset` folder
of your schema.

Step 9: Using a text editor or terminal window add a `CustomEntity01.yml` file next to the
`CustomEntity01` folder, in the assets folder, and put the content below in that file.

the type of dynamic content

type: "shotgun_entity"

the shotgun field to use for the folder name

name: "code"

the shotgun entity type to connect to

entity_type: "CustomEntity01"

shotgun filters to apply when getting the list of items

this should be a list of dicts, each dict containing

three fields: path, relation and values

(this is std shotgun API syntax)

any values starting with $ are resolved into path objects

filters:

 - { "path": "project", "relation": "is", "values": ["$project"] }

The YAML file will give the instructions to Toolkit for what to name the `CustomEntity01` folder.
This YAML file has several variables that Toolkit utilizes to
[query](https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-Syst
em-Reference#Shotgun%20Query%20Folders) Shotgun data.

Step 10: Move `asset_type` and `asset_type.yml` into the `CustomEntity01` folder

https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#Shotgun%20Query%20Folders
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#Shotgun%20Query%20Folders

Final schema folder structure.

The `asset_type` is at a lower level then the `CustomEntity01` because it is the child of what will
be part of a specified Set and holds the folders for the types of assets that could be in a Set like
a dining room: prop, fx asset, character, etc...

{% include info title="Note:" content="Creating and managing new asset folders and YAML
files can be accomplished using a terminal window or text editor." %}

Edit `asset.yml` file

Editing the `asset.yml` file will allow the dynamic creation of the dining room folder when the first
artist begins work on the first asset for the dining room, and uses the **+New File** function of
the Workfiles app. You may be asking, “how does Toolkit know to generate the folder?”

The Toolkit algorithm that creates the folders knows to read the YAML files in the schema and
query the Shotgun data fields based on the task the artist is performing. As described above,
Toolkit builds the filesystem based on the results of the queries and the hierarchy of the
schema, gathering information on the project, the task, the root directory, and any filters you’ve
added or edited in the YAML files.

The queries in the algorithm search for the field values of the task the artist initiates. In this
case, the task you created earlier is for a 3D Model asset. If an asset is being created, like the
model of the filet, Toolkit queries the asset for the field values the YAML files specify. Below is
the asset information for creating the filet.

Looking at the task and the asset Toolkit knows: There’s a **Model Task** being created, the
Asset Name is **Filet**, it’s for the **Project the_other_side**, the **Set** is a **Dining
Room**, and the **Type** of asset is a **Prop**. Toolkit gets the information about the project
root directory through the data gathered from the `project.yml` file and uses the schema to
understand the hierarchy of the data it gathered.

The **+ New File** action happens at a step in the pipeline, so the algorithm for building the
folder structure knows to begin there in the schema, this will be the lowest level child of the

structure being built for saving the model of the filet. Here’s how Toolkit figures out the type of
data that folder stores and its name.

```# the type of dynamic content 
type: "shotgun_step" 
 
# the shotgun field to use for the folder name 
name: "short_name"``` 
 
The Toolkit algorithm uses the information it gathered from the task and the asset to build the 
filesystem starting with the content of the folder where the shotgun_step was identified. Names 
of folders and folder hierarchy are discovered at various points in the process based on the 
information available. In this case, the **+ New File** triggers actions that create a folder for the 
new file and name it, then the parent and ancestor directories are created based on the 
variables in each YAML file as the algorithm climbs up the schema to the project root directory.  
 
Below you will discover how the Toolkit algorithm uncover the parents and ancestors of the 
lowest folder and their names. 
 
The artist tasked with creating the 3D model of the filet is the first artist to work on the project. 
The first time the artist uses the Workfiles app to save an asset, Toolkit knows it needs to build 
the filesystem to have somewhere to save the files associated with this asset. Based on the task 
information, Toolkit knows that the artist is in the model step in the pipeline and that the artist is 
in the asset_step environment. Follow along with what happens next… 
 
Toolkit first creates a collection of all the YAML files needed to create the directories. A querying 
is performed that searches for data matching what’s being created: the task being performed, 
entity_type, and shotgun_entity, etc... The data begins being utilized at the lowest point of the 
schema where data is needed: 
 
Note: The display names for the data associated with task and asset are different than the code 
names used under the hood. 
 
The data fields being used in this file structure translate to these identifiers under the hood. All 
the identifiers could have multiple fields to choose from based on the `type` of data that’s 
identified. 
 
**Pipeline Step** = `"shotgun_step"` this identifier has multiple data fields to pull from and is 
pulling from the `”short_name”` for this example.  
**Asset Name** = `”code”` 
**Type** = `"sg_asset_type"` 
**Set** = "CustomEntity01"`` 
 



●​ Toolkit looks in the `step.yml` file at this line `type: "shotgun_step"` and queries the 
**Model** task data field, `"short_name"` which is different than what’s being displayed in 
the **Pipeline Step**, the data associated with the name of the `shotgun_step` has 
multiple values. From that data it takes the `“short_name”` **MDL** and names the folder 
accordingly. 
 

 
 
`step.yml’ queries... 
 

```type: "shotgun_step" 


name: "short_name"```

●​ Toolkit also looks in the `asset.yml` file to determine the type of folder to create is a
`”shotgun_entity”` and the Shotgun data it needs is the value of the Shotgun entity field
Asset Name or under the hood, `”code”` and finds **Filet**. This data is data is
identified as `entity_type` `”Asset”`.

`asset.yml` queries


```type: "shotgun_entity" 
 

name: "code" 
 
entity_type: "Asset"``` 

 
●​ The next stop is `asset_type.yml`. How Toolkit gets information from the `asset_type` 

skeleton is a little different. Here it’s identified that this folder needs to connect to the 
entity type `”Asset”` and based on the hierarchy it’s parent a of `asset`. It knows its value 
is from a `”shotgun_list_field”` and will get its name from the `“sg_asset_type”` field of 
the asset, **Prop**. 
 

 
 

```# the type of dynamic content 
type: "shotgun_list_field"

the shotgun entity type to connect to
entity_type: "Asset"

the shotgun field to use for the folder name
field_name: "sg_asset_type"```

●​ Toolkit jumps up another folder to find `CustomEntity01.yml` in the `asset_type` folder

and learns this is an entity type and it’s value for the name is based on the code field
where it relates `”CustomEntity01”` to Dining-Room to use for the filesystem folder
name.


```type: "shotgun_entity" 
 
name: "code" 
 
entity_type: "CustomEntity01"``` 

 
●​ Toolkit jumps up another folder into `assets` and there’s no YAML file, so it knows to 

create a static folder called `assets`. 
 

●​ Toolkit jumps up one more level to the `project.yml` file. Toolkit knows this is a folder that 
stores the project information because it’s of type `”project”` and it will inherently know 
what project is being worked on when running the algorithms. 
 

`type: "project"` 
 

It finds the project root in the `roots.yml` file that’s identified under the primary setting. 
 

```# name of project root as defined in roots.yml 
root_name: "primary"

primary:
 default: true
 linux_path: null
 mac_path: /Users/michelle/Documents/Shotgun/projects
 shotgun_storage_id: 4
 windows_path: null```

{% include info title="Note:" content="If the primary project path is changed the folders will
need to be unregistered and registered to the new path. To unregister folders see Advanced
topics below." %}

After Toolkit gathers all the information for what type of content each folder is going to store, it
then needs to find the names of the unknown folders and create the hierarchy for this task
based on the filters. This is what happens next…

●​ Starting from the `project` folder, the child is assets because it’s static

●​ The `CustomEntity01.yml` filter identifies that this entity belongs to the `the_other_side`
project folder and because of the hierarchy of the schema, it knows it belongs under the
`assets` folder and the assets folder doesn’t change because there’s no YAML file. The
static folders are just that… static and are created with the same name and position as
they are in the schema.

`CustomEntity01.yml` filters

`- { "path": "project", "relation": "is", "values": ["$project"] }`

●​ The `asset_type.yml` doesn’t have any filters. It already identified that the folder is called

`Prop` and based on the filters in the `asset.yml` file it knows `Prop` is the child of
`Dining-Room` and it’s associated with the `the_other_side` project.

`asset.yml` filters

   ``` - { "path": "project", "relation": "is", "values": [ "$project" ] } 
    - { "path": "sg_asset_type", "relation": "is", "values": [ "$asset_type"] } 
    - { "path": "sg_set", "relation": "is", "values": [ "$CustomEntity01" ] }``` 
 

●​ `asset.yml` filters identify the relationship of the folders above to the project 
`the_other_side`, the asset type **Prop** and the new custom entity **Dining Room** 
and puts the folders in order under the project, `the_other_side`.  

 
Each time a **+New File** action is performed on a new task the Workfiles app checks to see if 
there are any folders that need to be created and determines where this new file is to be saved. 
All the applications that save or retrieve files use the same schema and build what they need, 
extending the filesystem when necessary.   
 
## Test filesystem creation 
 
Before going live with your new settings, run a test to make sure the folders are being created 
correctly. 



 
**Step11:** Inside the copy of the project configuration root folder, run the `tank` command 
`folders` to create folders for an asset that already exists 
 
 
> cd /path/to/pipeline/config 
```> ls 
cache​ ​ ​ ​ install
config​ ​ ​ ​ tank
​ tank.bat

> ./tank Asset Filet folders

Welcome to the Shotgun Pipeline Toolkit!
For documentation, see https://support.shotgunsoftware.com
- You are running a project specific tank command. Only items that are part of
this project will be considered.
- Found Asset Filet (Project 'the_other_side')
- Running as user 'Michelle'
- Using configuration 'Primary Clone Config 2' and Core v0.18.159
- Setting the Context to Asset None.
- Running command folders...

--
Command: Folders
--

Creating folders, stand by...

The following items were processed:
 - /Users/michelle/Documents/Shotgun/projects/the_other_side
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/editorial
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/editorial/publish
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/editorial/work
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/reference
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/reference/artwork
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/reference/footage
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/sequences
 - /Users/michelle/Documents/Shotgun/projects/the_other_side/assets
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room
 -

/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/publish
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/publish/caches
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/publish/elements
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/publish/mari
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/reference
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/reference/artwork
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/reference/footage
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/review
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/work
 -
/Users/michelle/Documents/Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MD
L/work/images

In total, 23 folders were processed.```

The final structure matches what was expected, and Toolkit is so smart that it even added a
dash between Dining and Room enabling the label name to be used for the filesystem.

/the_other_side/assets/Dining-Room/Prop/Filet/MDL

{% include info title="Note:" content="You can also add other entities under the Dining-Room
to create a folder for the `Place-Setting`: knife, fork, spoon, plate, etc..." %}

Toolkit templates for reading and writing files

Now that we’ve set up our folder structure, the next step is to edit the templates, so production
files will be named appropriately and put in the correct folder when they're created. The
templates control how files are named giving metadata to files like version and extension.

How Toolkit apps use a Toolkit template

You first created a way to associate an asset with the dining room by enabling CustomEntity01
to represent Sets, then associating that entity with the type of set, Dining Room, so you can
manage the assets specific to the project. After establishing the relationship between the
custom entity and Set, you created the file structure schema that allows Toolkit to create the
folders necessary to save files based your filesystem. Now you’re going to create a way to
dynamically name files and allow Toolkit Apps to manage the files automatically. Toolkit Apps
utilize the configuration file `templates.yml` when a file is written or accessed by an app during a
pipeline process.

The first time an artist uses the Workfiles app **New File** action to create the first asset in a
new project, the necessary folder structure is generated and when the Workfiles app **File
Save** action is initiated, the file is named automatically. A template accessed through Toolkit’s
Workfiles app is used to name that file. Render apps like Nuke Write node and Houdini Mantra
node also utilize the templates to name and save rendered files.

When files are accessed using the Workfiles **File Open** action, the template is used to find
the appropriate file to load. The Publisher, Loader, and Nuke Studio Export apps also use the
template to find and manage files. The artist doesn’t have to worry about if the files are named
correctly or if they’re accessing the correct file, Toolkit manages them based on the template
and the task being performed.

Any Toolkit app used in a specific integration can use the same project schema to build a file
system, but templates are specific to each integration and the Toolkit app being used.

The templates are managed by the configuration file
`/<project_config>/config/core/templates.yml`. In the first three guides you managed and
created settings that were based on environments and were specific to software integrations.
The schema and template settings are stored in the `config/core` folder and are not specific to
an environment, but are specific to apps. One schema is used for the entire project and a
template can be accessed from any environment that’s appropriate. For example,
`template_work` is the setting for the Workfiles app that specifies which template in
`templates.yml` to use for work files. Depending on the environment and engine in which
Workfiles is configured, you might use this configuration setting to point to the
`maya_shot_work` template or the `houdini_asset_work` template from `templates.yml`.

Step 12: Navigate to `/<cloned project config>/config/core` and open `templates.yml`

This file is broken down into three sections:

[`Keys`](https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-Syste
m-Reference#The%20Keys%20Section) - words that identify variables used in your templates. Key
words like: Sequence, Shot, or Step are the variables that identify the entity type that is inserted
in the string. Each Key has a required name and type with optional values ranging from a
description, string, code etc... There are many ways a
[`Key`](https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-Syste
m-Reference#The%20Keys%20Section) word can be identified.

Below the `Keys` are `Paths`

[`Paths`](https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-Sy
stem-Reference#The%20Paths%20Section) - use the `Keys` to create a map to the folder
where the file is to be saved or found. There are both static folders and dynamic folders that are
used to build out the path to the file.

{% include info title="Important:" content="The paths in the templates need to match the
folder structure in the schema." %}

[`Strings`](https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-S
ystem-Reference#The%20Strings%20Section) - use keys to create templates for arbitrary text
strings. For example, it may be the name field for versioning or the formatting of a file being
published. The `Strings` section is similar to the `Paths` section, but while items in the paths
section are validated and must correspond with actual paths on disk, strings can be used to
store any text data that you want to refer to in your Toolkit workflows.

https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Keys%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Keys%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Keys%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Keys%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Paths%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Paths%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Strings%20Section
https://support.shotgunsoftware.com/hc/en-us/articles/219039868-Integrations-File-System-Reference#The%20Strings%20Section

In the case of a string it can reference a variable from somewhere else in the configuration and
finding the variable through the string can be done by instructing Toolkit to access other places
in the configuration.

Add template key for the Set entity

The first thing to do is add the Set entity key to let Toolkit know there’s a new key being defined.

Step 13: In the template.yml file add `CustomEntity01` under keys:

```keys: 

       CustomEntity01: 

           type: str``` 

 
### Adding the variable  
 
 Every individual integration has its own templates for each app that manages files. Since we’re 
modifying our Maya workflow, add the variable `{CustomEntity01}` to the template that will put 
the file in the correct folder using the `maya_asset_work` template. This will tell Toolkit to, “use 
the path with the `Dining-Room` folder to save assets associated with the Dining Room.” 
 
Saving asset work files is triggered in the asset_step environment using the Workfiles app. You 
can find the template that the asset_step environment uses by following the includes from the 
`tk-maya.yml file`. This is the file that contains the starting point for the map of where the Toolkit 
settings live for Maya. 
 
{% include info title="Note:" content="If other apps in other integrations are saving model 
assets for the dining room then these apps will also need a template specific to that integration" 
%} 
 
### Find the template the Maya asset_step environment uses for the Workfiles2 app 
 
**Step 14 In the `<copy of project configuration>/config/env/asset_step` look under the 
`engines:` for the `tk_maya:` `"@settings.tk-maya.asset_step"` and look in the `includes:` to find 
`./includes/settings/tk-maya.yml`.  
 
Find the start of the roadmap that will take you to the settings Toolkit uses when the Workfiles 
app is triggered from the asset_step environment in Maya. 
 
**Step 15: **Open `tk-maya.yml` and look under the `settings.tk-maya.asset_step` to find 
`tk-multi-workfiles2`.  
 



The template settings are nested under `settings.tk-multi-workfiles2.maya.asset_step` in 
`tk-multi-workfiles2.yml` 
 
{% include info title="Note:" content="In [Editing an app setting](./editing_app_setting.md) we 
learned a bit about how a Default Configuration is structured. To reiterate, the setting above is a 
good example of the structure and gives you a window into how the configuration can be used. 
`tk` = Toolkit, `workfiles2` = the workfiles app, `maya` is the integration, and `asset_step` is the 
environment." %} 
 
**Step 16:** Open `tk-multi-workfiles2` and search for 
`settings.tk-multi-workfiles2.maya.asset_step`  
 
Below this are the template settings for Workfiles. The name of the `template_work` template 
that’s used for managing assets in Maya is what you are ultimately looking for. The setting 
displayed next to `template_work` is `maya_asset_work`. 
 
### Look in the `templates.yml` file for `maya_asset_work` 
 
**Step 17:** In **template.yml** search for **maya_asset_work** 
 
 ``` 
 maya_asset_work:
 definition: '@asset_root/work/maya/{name}.v{version}.{maya_extension}'
``` 
 
The `definition:` for `maya_asset_work`: begins with `@asset_root`. The `@` symbol signifies 
that the setting is nested somewhere. In this case it’s nested inside the `template.yml` file. 
 
{% include info title="Note:" content="The template settings don’t nest settings the same way 
the environment settings do. If there’s an include, `@`, in the `templates.yml` file it symbolizes 
there’s an included setting within the `templates.yml` file." %} 
 
Since each integration and each app within those integrations use their own settings, you can 
imagine that this same path can be used in many different places inside the `template.yml` file. 
The configuration is setup so it can refer to one master path and reuse that throughout the 
`template.yml` file. You won’t have to change each instance of the path generation settings 
when you can reference the master path. 
 
This is done with the `asset_root` setting in the `path:` section of `template.yml`, ultimately 
creating the path variables that can be referenced by settings in the `template.yml` file. 
 
### Edit the template to match the path in the filesystem schema 



 
**Step 18:** Search for `asset_root` at the top of the `paths` section of `templates.yml`, this is 
where the master path settings are referenced. Add `CustomEntity01` to the `asset_root` path 
and match the schema you created for the project. 
 
Project schema 
 
`<project>/assets/<CustomEntity01>/<asset_type>/<asset>/<step>` 
 
Master path 
 
`asset_root: assets/{CustomEntity01}/{sg_asset_type}/{Asset}/{Step}` 
 
### Set up the path for naming the file and adding the metadata 
 
Adding `CustomEntity01` in the setting for `maya_asset_work` adds the entity name to the file. 
 
**Step 19:** Search for the `maya_asset_work` template and add the variable `CustomEntity01` 
to the string. This setting is for any asset that uses Workfiles in Maya to save files associated 
with that specific asset. 
 
`maya_asset_work: 
     definition: '@asset_root/work/maya/{CustomEntity01}_{name}.v{version}.{maya_extension}'` 
 
This action allows you to use the Dining-Room entity proper name in the file name. The result 
would be something like `Dining-Room_Filet.v1.mb`. 
 
{% include info title="Note:" content="The files don’t save metadata for the project or entity 
they are associated with. The only way to determine the association is by the folder structure 
the file is saved in or by adding your own file name structure using metadata from Shotgun." %} 
 
You edited settings for the Maya Workfiles app to use when naming files. A new key word was 
added for the new entity type, the key word was used as one of the variables for file naming, 
and a master path was created as a reference. The file name variables were also edited, adding 
the new entity as part of the name.  
 
## Test it 
 
**Step 20:** Open Maya from Shotgun Desktop. 
 



 
 
In the **Shotgun menu > File Open** dialog, select a task on an asset for which you’ve specified 
a set in Shotgun.  



 
 
Select **+New File**. 
 
You can create a simple 3D object or just save the file using the **Shotgun Menu > Save File**. 
 



 
 
Success! 
 

 
 
Notice the **File Save** dialog box is displaying **Preview: Dining-Room_scene.v001.ma** 
using the variables that were set in the `preview:` 
 
The **Work Area**: is displaying 
**.../Shotgun/projects/the_other_side/assets/Dining-Room/Prop/Filet/MDL/work/maya** as the 
path for where Workfiles is saving the file. 
 
### Adding folders to an existing filesystem 
 



If there are assets other than props for the dining room: fx asset, character, vehicle etc…, Toolkit 
creates only the folders that don’t exist. For example: if no tasks have been initiated that are 
associated with an fx asset entity the first time the artist selects **+New File** on a task to 
create an fx asset, Toolkit looks at the data, compares it to what the current filesystem structure 
is, and if the folder structure for the fx asset entity doesn’t exist, it utilizes the schema to create 
only the folders needed to save fx assets. It creates the new folders based on what’s needed for 
the ancestors and descendants of fx asset and caches the new path. 
 
## Advanced topics 
 
### Unregistering folders and creating a new path 
https://www.google.com/url?q=https://support.shotgunsoftware.com/hc/en-us/articles/21904041
8-What-is-the-Path-Cache-What-are-Filesystem-Locations-&sa=D&ust=1555705593472000&us
g=AFQjCNGEwrMeZmGRp9QLev0l7Jqvvgo55A 
 
### Creating the path for the assets 
 
Toolkit only builds the necessary structure for the task that’s being performed then saves the 
path for that task in the cache, so any Toolkit app being utilized for that task can access the path 
when needed and doesn’t have to run the queries on folders that are already created. 
 
### Workfiles does not send information to Shotgun 
 
### User Sandboxes 
https://support.shotgunsoftware.com/hc/en-us/articles/219033088-Your-Work-Files#User%20sand
boxes 
 
### Video demo of how to take over integrations and create a custom file structure 
 
https://www.youtube.com/watch?v=7qZfy7KXXX0&t=1961s 

https://support.shotgunsoftware.com/hc/en-us/articles/219040418-What-is-the-Path-Cache-What-are-Filesystem-Locations-
https://support.shotgunsoftware.com/hc/en-us/articles/219040418-What-is-the-Path-Cache-What-are-Filesystem-Locations-
https://support.shotgunsoftware.com/hc/en-us/articles/219040418-What-is-the-Path-Cache-What-are-Filesystem-Locations-
https://support.shotgunsoftware.com/hc/en-us/articles/219033088-Your-Work-Files#User%20sandboxes
https://support.shotgunsoftware.com/hc/en-us/articles/219033088-Your-Work-Files#User%20sandboxes
https://www.youtube.com/watch?v=7qZfy7KXXX0&t=1961s

