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Problem 1
 

a.​ Plot the cdf of time to failure for each machine (four curves on one graph) for 200 
hours. 

 
Figure 1 - CDF of Time to Failure for Each Machine 

 
 

b.​ Plot 𝑅𝑖(𝑡) for 200 hours (four curves on one graph). 
 

Figure 2 - Reliability of Each Machine over Time 

 
Note. The y axis starts at .7 for a more detailed understanding of the curves. 



 
c.​ Calculate reliability for each machine, 𝑅𝑖, evaluated at two work weeks. 

 
Table 1 - Reliability of Each Machine at Two Work Weeks 

 
 
 

 

Problem 2
 

a.​ What is the optimal allocation of redundancy if factory floor total reliability is the only 
Objective? 

 
If total reliability is the only objective, the optimal allocation of redundancy is to have 3 of Machine 1, 
3 of Machine 2, 2 of Machine 3, and 2 of Machine 4. This results in a maximum system reliability of 
0.98498. Accordingly, 0.98498 be used as the target  in goal programming parts (c), (d), and (e). 𝑡
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Table 2 - Optimal Redundancy for (a) 

 
 

Figure 3 - Mathematical Formulation for Part (a) 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 𝑀𝑎𝑥 (
𝑖 = 1

𝑖 = 4

∏ [1 −  (1 −  𝑅
𝑖
)

𝑛
𝑖] ) 

 
 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑏𝑦 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑛
1
, 𝑛

2
, 𝑛

3
, 𝑛

4
 

 
  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠:  𝑆𝑖𝑛𝑔𝑙𝑒 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑎𝑡 80 𝑊𝑜𝑟𝑘 𝐻𝑜𝑢𝑟𝑠

 𝑅
1 

=  0. 87905, 𝑅
2 

=  0. 89683, 𝑅
3 

=  0. 92912, 𝑅
4 

=  0. 91514,

 
 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠



 
𝑖 = 1

𝑖 = 4

∑ (𝑛
𝑖
) =  10

 𝑛
𝑖

≥  1     ∀ 𝑖 ϵ {1, 2, 3, 4} 

 𝑛
𝑖

≤  5     ∀ 𝑖 ϵ {1, 2, 3, 4}

 }  𝑛
𝑖

ϵ {ℵ     ∀ 𝑖 ϵ {1, 2, 3, 4}

 
 
 

b.​ What is the optimal allocation of redundancy if total acquisition cost is the only 
objective? 

 
If the total acquisition cost is the only objective, the optimal allocation of redundancy is to buy 5 of 
Machine 1, 3 of Machine 2, 1 of Machine 3, and 1 of Machine 4. This results in a minimum total 
acquisition cost of $ 2,766,146. Accordingly, $2,766,146 be used as the target  in goal 𝑡
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programming parts (c), (d), and (e). 
 

Table 3 - Optimal Redundancy for (b) 

 
 

Figure 4 - Mathematical Formulation for Part (b) 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡

) 𝑀𝑖𝑛( 
𝑖 = 1

𝑖 = 4

∑ [𝑛
𝑖

· (𝑎
𝑖
𝑒

𝑏
𝑖

1−𝑅
𝑖 )] 

 
 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑏𝑦 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑛
1
, 𝑛

2
, 𝑛

3
, 𝑛

4
 

 
  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠:

 𝑅
1 

=  0. 87905, 𝑅
2 

=  0. 89683, 𝑅
3 

=  0. 92912, 𝑅
4 

=  0. 91514,

 𝑎
1

=  1. 9 , 𝑎
2

=  2. 9 , 𝑎
3

=  1. 2 , 𝑎
4

=  0. 9 

 𝑏
1

=  1. 4 , 𝑏
2

=  1. 2 , 𝑏
3

=  0. 9 , 𝑏
4

=  1. 1

 
 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 
𝑖 = 1

𝑖 = 4

∑ (𝑛
𝑖
) =  10

 𝑛
𝑖

≥  1     ∀ 𝑖 ϵ {1, 2, 3, 4} 



 𝑛
𝑖

≤  5     ∀ 𝑖 ϵ {1, 2, 3, 4}

 }  𝑛
𝑖

ϵ {ℵ     ∀ 𝑖 ϵ {1, 2, 3, 4}

 
 
 

c.​ Consider the individual optimal objective function values from a and b as targets in a 
goal programming formulation. Consider the situation where total reliability and total 
acquisition cost are equally important. What is the optimal allocation of redundancy? 

 
If total reliability and total acquisition cost are weighted as equally important, then the optimal 
allocation of redundancy is to have 4 of Machine 1, 2 of Machine 2, 2 of Machine 3, and 2 of 
Machine 4. This results in the minimum weighted scaled deviations from the targets being 0.9749. 
This is summarized in Table 4. 
 

Table 4 - Optimal Redundancy for (c) 

 
 

Figure 5 - Goal Programming Formulation for Part (c) 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇ℎ𝑒 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑎𝑙𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

 𝑚𝑖𝑛(
𝑗 = 1

𝑗 = 2

∑ ( 1
𝑡

𝑗
· (𝑤

𝑗
−𝑑

𝑗
− + 𝑤

𝑗
+𝑑

𝑗
+)))

 
 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑏𝑦 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑛
1
, 𝑛

2
, 𝑛

3
, 𝑛

4
 

 𝑆𝑙𝑎𝑐𝑘  𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 𝑑
1
+, 𝑑

1
−, 𝑑

2
+, 𝑑

2
− 

 
 𝐺𝑜𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠:  𝐵𝑜𝑡ℎ 𝑔𝑜𝑎𝑙𝑠 𝑒𝑞𝑢𝑎𝑙𝑙𝑦 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡

 𝑤
1
+ = 𝑤

1
− = 𝑤

2
+ = 𝑤

2
− = 1 

 
  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 𝑅
1 

=  0. 87905, 𝑅
2 

=  0. 89683, 𝑅
3 

=  0. 92912, 𝑅
4 

=  0. 91514,

 𝑎
1

=  1. 9 , 𝑎
2

=  2. 9 , 𝑎
3

=  1. 2 , 𝑎
4

=  0. 9 

 𝑏
1

=  1. 4 , 𝑏
2

=  1. 2 , 𝑏
3

=  0. 9 , 𝑏
4

=  1. 1

 
  𝐺𝑜𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑠



  (
𝑖 = 1

𝑖 = 4

∏ [1 −  (1 −  𝑅
𝑖
)

𝑛
𝑖] ) +  𝑑

1
− − 𝑑

1
+ = 𝑡

1
= 0. 98498 

  (
𝑖 = 1

𝑖 = 4

∑ [𝑛
𝑖

· (𝑎
𝑖
𝑒

𝑏
𝑖

1−𝑅
𝑖 )]) + 𝑑

2
− − 𝑑

2
+ = 𝑡

2
= $2, 766, 146

 𝑅𝑖𝑔𝑖𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 
𝑖 = 1

𝑖 = 4

∑ (𝑛
𝑖
) =  10

 𝑛
𝑖

≥  1     ∀ 𝑖 ϵ {1, 2, 3, 4} 

 𝑛
𝑖

≤  5     ∀ 𝑖 ϵ {1, 2, 3, 4}

 }  𝑛
𝑖

ϵ {ℵ     ∀ 𝑖 ϵ {1, 2, 3, 4}

 𝑑
𝑗
+, 𝑑

𝑗
− ≥ 0   ∀ 𝑗 ϵ {1, 2}

 
 
 
d. Consider the situation where total reliability is twice as important as total acquisition cost. 
What is the optimal allocation of redundancy? 
 
If total reliability is weighted as twice as important as total acquisition cost, then the optimal 
allocation of redundancy does not change. It remains optimal to have 4 of Machine 1, 2 of Machine 
2, 2 of Machine 3, and 2 of Machine 4. This results in the minimum weighted scaled deviations from 
the targets being 0.10551. This is summarized in Table 5. 
 

Table 5 - Optimal Redundancy for (d) 

 
 

Figure 6 - Goal Programming Formulation for Part (d) 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇ℎ𝑒 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑎𝑙𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

 𝑚𝑖𝑛(
𝑗 = 1

𝑗 = 2

∑ ( 1
𝑡

𝑗
· (𝑤

𝑗
−𝑑

𝑗
− + 𝑤

𝑗
+𝑑

𝑗
+)))

 
 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑏𝑦 𝑀𝑎𝑐ℎ𝑖𝑛𝑒

 𝑛
1
, 𝑛

2
, 𝑛

3
, 𝑛
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 𝑆𝑙𝑎𝑐𝑘  𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 𝑑
1
+, 𝑑

1
−, 𝑑

2
+, 𝑑

2
− 

 
 𝐺𝑜𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠:  𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑇𝑤𝑖𝑐𝑒 𝑎𝑠 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑎𝑠 𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡



 𝑤
1
+ = 𝑤

1
− =  2  ;  𝑤

2
+ = 𝑤

2
− = 1 

 
  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 𝑅
1 

=  0. 87905, 𝑅
2 

=  0. 89683, 𝑅
3 

=  0. 92912, 𝑅
4 

=  0. 91514,

 𝑎
1

=  1. 9 , 𝑎
2

=  2. 9 , 𝑎
3

=  1. 2 , 𝑎
4

=  0. 9 

 𝑏
1

=  1. 4 , 𝑏
2

=  1. 2 , 𝑏
3

=  0. 9 , 𝑏
4

=  1. 1

 
  𝐺𝑜𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑠

  (
𝑖 = 1

𝑖 = 4

∏ [1 −  (1 −  𝑅
𝑖
)

𝑛
𝑖] ) +  𝑑

1
− − 𝑑

1
+ = 𝑡

1
= 0. 98498 

  (
𝑖 = 1

𝑖 = 4

∑ [𝑛
𝑖

· (𝑎
𝑖
𝑒

𝑏
𝑖

1−𝑅
𝑖 )]) + 𝑑

2
− − 𝑑

2
+ = 𝑡

2
= $2, 766, 146

 𝑅𝑖𝑔𝑖𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 
𝑖 = 1

𝑖 = 4

∑ (𝑛
𝑖
) =  10

 𝑛
𝑖

≥  1     ∀ 𝑖 ϵ {1, 2, 3, 4} 

 𝑛
𝑖

≤  5     ∀ 𝑖 ϵ {1, 2, 3, 4}

 }  𝑛
𝑖

ϵ {ℵ     ∀ 𝑖 ϵ {1, 2, 3, 4}

 𝑑
𝑗
+, 𝑑

𝑗
− ≥ 0  ∀ 𝑗 ϵ {1, 2}

 
e. Consider the situation where total acquisition cost is twice as important as total reliability. 
What is the optimal allocation of redundancy? 
 
If total acquisition cost is weighted as twice as important as the total reliability, then the optimal 
allocation of redundancy changes. Now, the optimal allocation of redundancy is to have 5 of Machine 
1, 2 of Machine 2, 1 of Machine 3, and 2 of Machine 4. This results in the minimum weighted scaled 
deviations from the targets being 0.11499. Results are shown in Table 6. 
 

Table 6 - Optimal Redundancy for (e) 

 
 

Figure 7 - Goal Programming Formulation for Part (e) 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛:  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇ℎ𝑒 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑐𝑎𝑙𝑒𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

 𝑚𝑖𝑛(
𝑗 = 1

𝑗 = 2

∑ ( 1
𝑡

𝑗
· (𝑤

𝑗
−𝑑

𝑗
− + 𝑤

𝑗
+𝑑

𝑗
+)))

 



 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 𝑏𝑦 𝑀𝑎𝑐ℎ𝑖𝑛𝑒
 𝑛

1
, 𝑛

2
, 𝑛

3
, 𝑛

4
 

 𝑆𝑙𝑎𝑐𝑘  𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

 𝑑
1
+, 𝑑

1
−, 𝑑

2
+, 𝑑

2
− 

 
 𝐺𝑜𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑠:  𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 𝑖𝑠 𝑇𝑤𝑖𝑐𝑒 𝑎𝑠 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑎𝑠 𝑆𝑦𝑠𝑡𝑒𝑚 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 𝑤
1
+ = 𝑤

1
− =  1  ;  𝑤

2
+ = 𝑤

2
− = 2 

 
  𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

 𝑅
1 

=  0. 87905, 𝑅
2 

=  0. 89683, 𝑅
3 

=  0. 92912, 𝑅
4 

=  0. 91514,

 𝑎
1

=  1. 9 , 𝑎
2

=  2. 9 , 𝑎
3

=  1. 2 , 𝑎
4

=  0. 9 

 𝑏
1

=  1. 4 , 𝑏
2

=  1. 2 , 𝑏
3

=  0. 9 , 𝑏
4

=  1. 1

 
  𝐺𝑜𝑎𝑙 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑠

  (
𝑖 = 1

𝑖 = 4

∏ [1 −  (1 −  𝑅
𝑖
)

𝑛
𝑖] ) +  𝑑

1
− − 𝑑

1
+ = 𝑡

1
= 0. 98498 

  (
𝑖 = 1

𝑖 = 4

∑ [𝑛
𝑖

· (𝑎
𝑖
𝑒

𝑏
𝑖

1−𝑅
𝑖 )]) + 𝑑

2
− − 𝑑

2
+ = 𝑡

2
= $2, 766, 146

 𝑅𝑖𝑔𝑖𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 
𝑖 = 1

𝑖 = 4

∑ (𝑛
𝑖
) =  10

 𝑛
𝑖
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f. Comment on all results, discussing how the allocation changes (if any) across the different 
perspectives in parts a through e. 
 
A summary of the results is shown in Table 7. 
 

Table 7 - Summary of Redundancy By Objective 



 
 
From this, we get the intuition that machine 1 produces the most “bang for the buck” in terms of cost 
to reliability ratio for our goals. This is followed by machines 2, 4 and 3. This is corroborated by 
dividing the cost to the reliability for each of the machines, as shown in Table 8.  
 

Table 8 - Cost to Reliability Ratios

 
 
Additionally, In all cases where goal programming was used, we undershoot on the reliability and 
overshoot on the cost in comparison to our targets. This makes sense considering our targets were 
found in (a) and (b) when reliability and cost were the only objectives, respectively.  
 
The analysis above is only for 80 work weeks. For further analysis, sensitivity analysis could be 
conducted by varying the times from 0 hours to 100,000 hours, conducting parts (a) through (e) 
again, and finding the mode for each machine’s allocation for the problems. This would allow us to 
make a more robust decision that would hold better across all times, rather than just base everything 
off of the machines’ reliability and acquisition cost at two work weeks. 
 
 

 

Problem 3
 

 
 

a.​ Provide a graphical representation of the decision problem. 
 



Figure 8 - Facility Location Decision Tree 

 
 

b.​ Evaluate the three alternatives (i) opening in-state, (ii) opening out-of-state, and (iii) 
keeping the status quo. 

 
After evaluating the expected values of each of the alternatives, we come up with Table 9. 
 



 
Table 9 - Expected Profit by Alternative 

 
 
Based on the expected value, it will be most profitable to open a new out-of-state facility warehouse.  
 

 

Problem 4
 

a.​ Calculate weights for each supplier selection criterion for each stakeholder 
individually. Determine if the assessments are consistent, though use them 
regardless. 

 
AHP was used to find out what each stakeholder would weight each of the three supplier selection 
criteria (C1, C2, C3) . Each stakeholder’s consistency index (CI) was also found using AHP. The 
results from each analysis are summarized in Table 10.  
 

Table 10 - Each Stakeholder’s Elicited Supplier Weighs and Consistency

 
 
Because each stakeholder’s consistency indexes are less than .1, each stakeholder’s weightings 
can be assumed to be consistent.  
 

b.​ Calculate an overall set of weights for the supplier selection criterion using the 
weighted arithmetic mean across the five stakeholders. Interpret these weights. 



 
To find how much to weight each supplier’s perspective, AHP was also used. The results are shown 
in the “Weight” row of Table 11. 
 

Table 11 - The Importance of Each Stakeholder in the Decision

 
 
Then, a simple weighted arithmetic mean across the five stakeholders was done to find the overall 
supplier weightings of C1, C2, and C3. The results are shown in Table 12.  
 

Table 12 - The Aggregated Supplier Weights 

 
 
Interpreting this analysis, we find that when all stakeholders’ perspectives are accounted for, 
average lifecycle cost, worst case lifecycle cost, and maintainability are weighted as ~44.6% 
important, ~32.7% important, and ~22.7% important, respectively. This result is valid considering all 
steps along the way were shown to be consistent. 
 

 

Problem 5
 

a.​ Find the maximum likelihood estimates of annual operating cost distributions for each 
machine for each supplier. 

 
 
 



The annual operating cost distributions were assumed to be normally distributed. The method of 
maximum likelihood was used to obtain best-fit parameters for the Mean and Standard Deviation. 
These results are shown in Table 13. 
 

Table 13 - Best-Fit Mean and Standard Deviation Parameters 

 

 
b.​ Calculate the present value of average lifecycle cost of the factory floor setup for each 

supplier. 
 
Present value of the average lifecycle cost was calculated by keeping the acquisition costs for new 
machines–equivalent to what is shown in Table 8–at present day, and transposing the average 
annual operating costs to the present day using the P/A rule. Results are shown in Table 14. 
 

Table 14 - Present Value of System Cost (Average) 

 
 
On Average, supplier two is the best. 
 

c.​ Calculate the present value of the worst case lifecycle cost of the factory floor setup 
for each supplier, where the worst case is considered to be the lifecycle cost value 
associated with 5% in the worst case tail. 

 
A procedure identical to (b) was conducted, the only difference was adjusting each of the Machine 
annual costs to reflect their worst case annual cost, then summing those up for the overall system 
worst case annual cost. After transposing those to the present value, the worst case scenario results 
are shown in Table 15. 
 

Table 15 - Present Value of System Cost (Worst Case) 

 
 



Supplier two still remains by far the best. This is due to the low variability in each of its annual 
machine operating costs.  
 
 

d.​ Rank the suppliers according to the three criteria individually. Then provide the 
ranking of suppliers using TOPSIS. Scale benefits and costs according to Eqs. (3) and 
(4), respectively. 

 
Starting from Table 16, we rank the suppliers. 
 

Table 16 - Supplier Performance by Criteria 

 
 
Ranking the suppliers according to the three criteria individually, we get what is shown in Table 17. 
 

Table 17 - Quick Ranking 

 
 
 
To make this more rigorous and quantifiable, TOPSIS is used. The results are shown in Table 18. 
The higher the TOPSIS score, the better. 
 

Table 18 - TOPSIS Ranking 

 
 
According to TOPSIS, supplier two (S2) should be picked. 
 

e.​ Comment on everything, including the selection of a supplier. 



 
Supplier two (S2) produces the overall cheapest machines, with the lowest annual cost variability, 
and are also the quickest to repair on average. As such, supplier two (S2) is strictly better than all 
other options.  
 

 

Problem 6
 

 
a.​ Construct the payoff matrix associated with each combination of alternative and 

uncertain demand scenario. 
 
The payoff matrix in Table 19 was constructed from the following formula for monthly profit. 
 

Figure 9 - Formula for Monthly Widget Profit 

 𝑀 =  𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑑𝑔𝑒𝑡𝑠 𝑤𝑒 𝑚𝑎𝑘𝑒 𝑖𝑛 1 𝑚𝑜𝑛𝑡ℎ (𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒)
 𝑆 =  𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑑𝑔𝑒𝑡𝑠 𝑤𝑒 𝑠𝑒𝑙𝑙 𝑖𝑛 1 𝑚𝑜𝑛𝑡ℎ (𝑡ℎ𝑒 𝑑𝑒𝑚𝑎𝑛𝑑)

   𝑃𝑟𝑜𝑓𝑖𝑡( 𝑀,  𝑆) =  $150, 000 ·  𝑆  −  $120, 000 · (𝑀 −  𝑆) 
  𝑀 ≥  𝑆

 
Table 19 - Payoff Matrix with Probabilities 

 

 
b.​ What monthly production decision should be made according to a pessimistic 

decision maker? 
The worst case is that only 5 are sold. So, out of our “5” column, picking the best scenario out of the 
worst case would entail choosing to make only 5 widgets per month. 



 
c.​ What monthly production decision should be made according to an optimistic 

decision maker? 
The best case is that 15 are sold. So, out of our “15” column, picking the best scenario out of the 
worst case would entail choosing to make 15 widgets per month. 
 

d.​ What monthly production decision should be made if the decision-maker uses solely 
the expected value? 

 
However, we know the probabilities, so decision making under uncertainty is not needed. Let us use 
these probabilities to calculate the expected values of each production alternative. This is shown in 
Table 20.  
 

Table 20 - Expected Monthly Profit by Alternative 

 
 
As seen, we should make 10 widgets per month to maximize average expected value of profit. But 
the consequences of overproducing by 1 are virtually inconsequential. Thus, we should err on the 
side of overproducing rather than underproducing. 
 

e.​ We assumed that customers wouldn’t “balk” (i.e., wouldn’t get upset if Haimes, Inc. 
had already sold its monthly widget production and thus the customer’s demand goes 
unmet). How would the problem change if we wanted to consider balking (don’t do 
any calculations but discuss how the structure of the problem would change)? 



 
 
If customers balked, then everywhere that is in red in Table 19 would have a penalty cost in it 
reflective of the opportunity cost. Because of these new values, we would have to re-run our 
pessimistic, optimistic, and expected value analysis to reflect this change. 
 
 

 

Problem 7
 

Be reflective of all the tools that you’ve integrated to solve this series of fairly simple 
problems. Summarize in three sentences. Then write a 5-7-5 haiku devoted to TOPSIS. 
 
Summary: 
 
We used the Weibull distribution to model machine reliability, goal programming to find the best 
allocation of redundancy, and a decision tree to find where to build a new facility. Then we used AHP 
to create weights to balance stakeholder perspectives on machine supplier criteria. Then, we used 
the method of maximum likelihood to fit normal distributions to annual costs, Engineering Economics 
to transpose these annual future costs into the present, decided which supplier to get the new 
machines from, and used an empirical distribution of demand to optimize our expected value of 
profits.  
 
Haiku: 
 
TOPSIS, can’t you see? 
You and AHP blend so 
commensurately 
 


