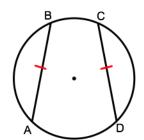

Chords

Recall from Lesson 6.1 that a chord is a segment with both endpoints on the circle. Because it's endpoints are on the circle, any chord divides the circle in two arcs, a major arc and a minor arc.

A diameter is chord that goes through the center of the circle. A diameter also divides any circle into two arcs, however these arcs are both semicircles.

In a circle, there are several relationships between chords and arc length.

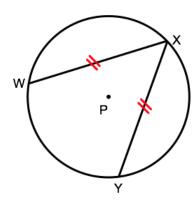
Activity #1: a quick demonstration linking chord length to arc length.


 \overline{BC} and \overline{DE} are chords on $\odot A$. Drag points B, C, D, and E around to adjust the length of the chords or arcs.

 \widehat{BC} (the blue arc) and \widehat{DE} (the green arc) are the arcs associated with the two segments. Use the activity to answer the following questions. As you answer, discuss them with a partner.

- 1. Make \overline{BC} and \overline{DE} equal in length. How are the arcs related? Try this for a few lengths of \overline{BC} and \overline{DE} to verify your hypothesis.
- 2. Make \overline{BC} and \overline{DE} unequal in length. Does the longer chord or the shorter chord have the longer arc?

THEOREM 6.3:


In the same circle, or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.

In other words, $\widehat{AB} \cong \widehat{CD}$ if and only if $\overline{AB} \cong \overline{CD}$.

Example #1:

Use ○*P* to find the following:

(A) If
$$\widehat{mXW} = 120^{\circ}$$
, find \widehat{mXY} .

(B) If
$$\widehat{mWY} = 168^{\circ}$$
, find \widehat{mXY} .