Universal Text

Project & Software Specification

UW Reality Labs

©

Tech Lead/PM

Nathan Reilly, Justin Lin

GitHub

Scrum Board

Expected Delivery

Changes to Spec:
Change Date Change Author Change Reason
Aug. 17, 2024 Justin Lin Initial Author
Aug. 31, 2024 Nathan Reilly & Justin Lin Technical revisions for Text Label
composition. Added Introduction
Sep 27, 2024 Nathan Reilly Large-scale revision of the
implementation
Jan 20, 2025 Nathan Reilly Revision of the UTT and UTS
implementation & other updates for
W25
Point Persons:
Role Name Contact Info
Sedra Lead Peter Teertstra peter.teertstra@uwaterloo.ca
Team Lead Justin Lin jk3lin@uwaterloo.ca
Nathan Reilly nathanmreilly@gmail.com
UW Reality Labs Leads Vincent Xie vincent.xie@uwaterloo.ca
Kenny Na kenny.na@uwaterloo.ca
Justin Lin justin.lin1@uwaterloo.ca

https://github.com/uwrealitylabs/universal-text-unity

Table of Contents

B2 1 o =3 o 0o s 1= 41 2
INErOAUCTION......cceee e ——————— 3
Technical Specification...........cooc i 5
LT3) = o 5
The Real-Time Text Representation (Our Goal)............cccuuuiiiiiiiiiiiiiieeee e 5
UNIVEISAI TEXE TAG. .. uuuettttiiiiiiiiiieeteiee ettt ettt ettt ettt e e et e et et e aaaaeaeaaaaaaaaaaaaaans 5

L@ Y= 1= PSSR 5

1= o S 5
DeSCrIPHION: STIING. .. e i i e 5

Attributes: List<ANDULE>........oeiiie 5
IMPIEMENTAtION. ... 6
UNIVErsal TEXE SCANNEN....... ...ttt e e e e e e e e e e e e e e e nnnneneeeeaeeeannnes 10
OVEIVIBW. ...ttt e e e e e e ettt e e e e e e e e st et e e eeeeeaannasaeeeeaeeeaannsseeeeaaeeeennnnnees 10
IMPIEMENTAtION. ... 10
Universal Text Prompter & Additional SCripts..........cooooiiiiiiiii s 14
Acceptance Criteria.........ccmiiiiiiieirr s 15

ResoUurces ReQUIIE.........ooooeeeiiiiiiiiir s s s s s s e s ss s s s s e s s s s smm s s s s s e e e s e rnnm s s s s s e e e e e snmmannssnnen 15

Generated Description

The user is holding a pen holder in their right hand, which contains a blue marker, a red pen, and a
pencil. With their left hand, they are pointing at a PC monitor displaying the Waterloo Reality Labs
logo on a white background, which is set atop a medium-sized brown conference table. Nearby,
there's a red office chair and a green stapler.

When you prompt a virtual assistant (for example Meta Al on Raybans glasses), what happens
when you ask “What am | looking at”? Currently, the pipeline seems rather simplistic. The
cameras on the glasses take a picture, that picture is passed through a model that can assign
text labels to images, and finally that text label describing the whole image is passed into an
LLM. This process, especially the step where a model must describe everything in an image
using words, is often inaccurate.

What if we could build a system that...

e ...provides a richer text summary of a virtual environment, complete with descriptions of
how objects compose each other, are placed within/next to/on top of each other?

e ...also describes how you, the user, is interacting with that environment at any moment?
Could we assign additional text to describe that you are pointing at a specific object, or
reaching out for one?

e ...runs in real time, that is, can constantly update every frame to provide an updated
description. That way, we wouldn’t have to wait for text generation, and we could create
a live captioning system?

e ...runs entirely on-device, meaning this information is never sent to the cloud?

If we created this, we could use it for...
e ...in-application virtual assistants that make use of a rich text summary for high-accuracy
responses
e ...virtual science labs where users could receive detailed auto-generated scientific
explanations about tools and objects they interact with

e ...dynamic VR scene descriptions for the visually impaired, describing layout and
objects, or even what they’re holding, pointing at or nearby to
e ...and so much more

Universal Text aims to explore this. We will develop a structured software package for Unity,
which is composed of several scripts. We will begin with fully-virtual environments—artificial
scenes that we build and label ourselves. The goal is to create a system that allows Unity VR
developers to easily label their GameObjects with descriptions, and seamlessly integrate
tutorials, live captioning for accessibility, or virtual assistants into their application.

Technical Specification

Tech Stack

The tech stack for this project involves Unity, OpenAl Whisper, and Meta’s Llama 3 LLM running
locally. C# will be the primary scripting language.

The target platform is Meta Quest, inclusive of Meta Quest 2, Meta Quest 3, and Meta Quest
Pro headsets. The project will build on top of Meta’s XR All-in-One SDK (UPM) and therefore it
will be a dependency.

The Real-Time Text Representation (Our Goal)

The main components of the Universal Text project are dedicated to building a dynamic textual
representation of a user’s virtual environment and their interactions within it. To implement this,
we take advantage of Unity’s object hierarchy system. In a Scene, GameQbjects represent
entities that a user can perceive and interact with, such as characters, props and scenery. Using
Universal Text, developers first create descriptions for relevant GameObjects, optionally
including custom attributes and relationships with other GameObjects. During runtime, our tool
parses GameObjects that the user is currently interacting with, nearby to, or is able to perceive,
combining these individual descriptions into one cohesive, real-time textual representation.

From here we denote this real-time textual representation of a user’s virtual environment as
RTR. The main focus of the project is creating a tool that is capable of generating an RTR
during runtime whenever requested.

https://developer.oculus.com/downloads/package/meta-xr-sdk-all-in-one-upm/
https://docs.unity3d.com/Manual/GameObjects.html

Universal Text Tag

Overview

This is the core component of Universal Text: a C# script named Universal Text Tag (UTT).
This script contains all of the data needed by the Universal Text Scanner to describe the
GameObject it is attached to. This data includes a GameObject’s basic description, and its
attributes.

Fields

Description: string
A basic description of the GameObject

e E.g. “A small colorful fridge magnet in the shape of a fruit”
Attributes: List<Attribute>

A list of this GameObject’s attributes. Attributes can be thought of as descriptive statements of
the GameObject, which are generally capable of changing during runtime. For example, an
attribute of a water bottle could be “is 90% filled with water”, and later on this may change to
something like “is 40% filled with water”.

e E.g. [{*Stuck to”, <Refrigerator Universal Text Tag>}]

Implementation

The Universal Text Tag script is implemented as a C# class inheriting from MonoBehaviour so
that it can be attached to GameObijects. Its fields are to be easily customizable by developers,
likely with the help of custom PropertyDrawers for the Afttributes field, as developers will need to
provide delegates to initialize instances of the Attribute class (and thus the derived Relation
class).

The UTT also implements the ToString() method, which is used by the UTS when a string
representation of the GameOQbject is needed. When converting itself to a string, the UTT first
converts each Attribute into a string using its ToString() method, and then appends the list of all
attributes to the Description.

https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/types/classes
https://docs.unity3d.com/6000.0/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/PropertyDrawer.html
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://learn.microsoft.com/en-us/dotnet/api/system.object.tostring?view=net-9.0

Description;

List=Attribute> Attributes =

ToString()

representation = §"{ .Copy(Description)}”;

e> rcleanedAttributes = List<Attr

ute attribute in Attributes)

attribute.Valid) cleanedAttributes.Add{attribute];

if (cleanedAttributes.Count)

f
}

representation += " which ";
if (cleanedAttributes.Count 1)

i

return representation += X

return representation += $"{cleanedAttributes.First(J}.";
oreach (Attribute attribute in cleanedAttributes)

if (attribute == cleanedAttributes.Last(])

{

presentation += $"and f{attribute}.";

$"{attribute}, "

The following are the two inner classes that the UTT uses for its Attributes field:

e Attribute: a class that represents a single attribute, i.e. some descriptive statement
about the GameObject. The properties of this class are:
o Description: string: A formatted string that contains a placeholder for the
attribute’s Value
o Value: object: The current value of this attribute, to be inserted at the placeholder
of the Description, e.g. if our Description is “{0}% full”, and our Value is 30, then
we get “30% full”’

https://www.programiz.com/csharp-programming/library/string/format
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/types#:~:text=object%20is%20the%20ultimate%20base%20class%20of%20all%20types

o Valid: boolean: Whether or not this Attribute is currently relevant to this
GameObject. This will be false whenever this attribute is not worth mentioning
when describing our object.

Whenever the Value and Valid properties are accessed, the class calls their associated
delegates to retrieve their current value. This is to permit fully customizable attributes to
the developer, as the mechanism with which the Attribute instance retrieves the
necessary data to generate its description is left up to the developer alone.

When an Attribute is converted to a string using ToString(), it places whatever retrieved
from the Value property into the placeholder inside the Description property.

_description;
> _valueGetter;
Func=l > _validGetter;
Value { => _valueGetter(); }
Valid { = _validGetter(); }
o Deicription"

formattedDescription, Func< > valueGetter = , Funcsi > validGetter = b]

_description = formattedDescription;

if (valueGetter !=) _valueGetter = valueGetter;
else _valueGetter = () = g

d6;) _validGetter = validGetter;
alidGetter = () = .

ToString()
if (Value =)
{
return _description;

}
return Format(_description, Value);

e Relation (inherits from Attribute): a class that represents a relation with other
GameObject(s) (which must also have a UTT). Given that this class inherits from
Attribute, it contains all of the same data and is initialized with the same delegates, and it
also includes the following property:

o Tags: List<UTT>: A list of all of the UTTs attached to GameOQbijects that this
relation is held with. E.g. a pencil case GameObject might hold the relation
“contains” with several other pen and pencil GameObjects.

https://www.w3schools.com/cs/cs_inheritance.php

The value of the Tags property is also retrieved using a delegate, similar to the Value
and Valid properties.

When a Relation is converted to a string using ToString(), it will combine the inherited
Description and Value (if used) fields, as well as the string representations of the Tags
that the relation is held with.

This may look something like “contains a red pen, a blue sharpie, and a pink eraser”,
where “contains” is our Description field, our Value field is unused (as it will often be for
Relations, since we usually only care about the Tags), and the Tags field contains the
UTTs referencing the red pen, blue sharpie and pink eraser GameObjects.

Universal Text Scanner

Overview

The Universal Text Scanner (UTS) is a singleton class that, when requested, finds the UTTs of
any GameObijects currently relevant to the RTR, and aggregates their text representations into a
single text description of the user’s current environment and interactions. This is the final step in
the creation of our RTR (for now).

This script handles the aggregation of all relevant GameQObjects into our final RTR. To
accomplish this goal one might ask: How do we know which GameObjects are relevant? And,
for each of these GameObijects, in what way is it relevant? For example, a hammer may be
relevant because the user is hammering a nail with it, or an NPC may be relevant because the
user is speaking to it. To generate a rich, detailed RTR we want to be able to answer these
questions.

To do so, we will abstract the notions of “which GameObjects” and “why this GameObject’ into
the concept of a Search Point. For our purposes, a Search Point will represent a context (that
usually holds some relation with the user) within which GameObjects can either be a part of, or
not a part of. For example, a useful Search Point could be “All of the GameObjects that the user
is nearby to”, or “All of the GameObjects the user is holding”.

Now, we will consider all GameObijects that are a part of any Search Point’s context to be
relevant. With this, the UTS needs only to collect all GameObjects from the contexts of all
Search Points, and aggregate them to create the RTR.

Then, to describe the way in which each GameObject is relevant, we describe the context of the
GameObject’s Search Point, prepending it to the GameObject’s description. This produces
something like “The user is holding a screwdriver, and a small screw”, where our GameObjects
are the “screwdriver” and “small screw”, and the Search Point containing both of these has the
context: “All of the GameObjects the user is holding”.

Thus, the UTS produces the RTR by iterating through each Search Point, prepending the list of
the UTTs provided by each one by the description of the Search Point’'s context, and combining
the results of all of the Search Points together into one large string.

Implementation

Although our UTS class (more on it later) bears the name of the system, our SearchPoint is the
true star player. Within each different Search Point contains the functionality to, during runtime,
fetch a list of GameObjects currently within its respective context.

When implementing our SearchPoint, we want to provide maximum flexibility to developers
using our package. It would be ideal if developers could define their own SearchPoints, with
custom descriptions and searching functionality that may be tailored specifically for their

https://refactoring.guru/design-patterns/singleton

game/app. For example, a survival game may want a Search Point that fetches all the available
food in the vicinity of the user. We can’t create a Search Point for every possible context, so
instead we give our developers the tools necessary for them to create their own Search Points
as needed, using an interface.

Our SearchPoint interface, ISearchPoint, will look something like this:

ISearchPoint

Description { i}

salTextTag> Search();

This provides the developer the ability to customize the description of a SearchPoint’s context,
as well as the freedom to implement their own Search() function, returning a list of all the
GameObjects within the context.

Additionally, our package may also include its own default SearchPoints, such as all
GameObjects the user is pointing at, nearby to, looking at or grabbing. To implement our default
SearchPoints, we will use the same interface we provide to the developers.

Usage of our ISearchPoint interface (or any C# interface really) is straightforward, and looks
something like this:

https://www.w3schools.com/cs/cs_interface.php

GrabbingSearchPoint : ISearchPoint

Description { => "The user is grabbing"; }

List<UniversalTextTag> Search()

List<UniversalTextTag> grabbedGameObjects = List<Universa

return grabbedGameObjects;

Here, we created a new SearchPoint, a class named “GrabbingSearchPoint”, which covers the
context of all GameObijects the user is grabbing. Here, we say that GrabbingSearchPoint
implements 1SearchPoint. To our UTS, any class that implements ISearchPoint will be
considered a valid search point that can be included in the RTR.

Now, with a flexible interface for the creation of Search Points, all we have left to do is to
actually use them! This will be the job of our Universal Text Scanner.

In the UniversalTextScanner singleton, we will store a list containing the SearchPoints that we
will use to generate the RTR. Additionally, we define a function called Generate(), which
aggregates the contents of all SearchPoints into one large string, and returns it as the RTR. Our
implementation of the UTS will thus look something like this:

https://www.w3schools.com/cs/cs_interface.php#:~:text=another%20class.%20To-,implement,-an%20interface%2C%20use

: Mor

Generate()

rtr = "";
foreach (ISearchPoint searchPoint in _searchPoints)
5
13
searchPoint.Search();

ription;

}

AddSearchPoint(ISearchPoint searchPoint)

_searchPoints . Add(searchPoint);

And with that, we’ve covered the core functionality of Universal Text!

Universal Text Manager

Overview

The Universal Text Manager (UTM) is a Monobehaviour class that acts as a configuration
interface to the developer. In a sense, this is the final component of our package, as it is
responsible for referencing all of the core components of our package and exposing their
parameters to the developer.

As such, although its responsibility is quite significant, it is quite a simple component. All the
hard work is already done within the likes of the Universal Text Scanner and Universal Text
Tag, so all this script needs to do is provide our developer with the interface needed to integrate
their package within their VR application through the Inspector Window.

The UTM script is attached to the identically named UniversalTextManager prefab, found under
Assets/Scripts/Prefabs. The intention is that the developer will have an instance of this prefab in
any scene where they want the Universal Text package to be active. Additionally, they can use
the inspector window to configure the package as needed by selecting their instance of the
UniversalTextManager prefab.

The figure to the left shows the current (2025-05-22)
inspector view of the UTM. We have exposed
parameters for each search point that the developer
wants to include in the RTR, and an option to

v Universal Text Manager (S¢ @ 3t

Search Point Configs

Description Generation add/remove them. Additionally, there is parameters

Generate Delay L relating to how often to automatically generate a new

Llama 3 Settings RTR, and the Llama3 integration for additional

Use Llama 3 Enhanc v features (e.g. Universal Text Prompter).

Llama 3 > Url http://localhost:11434

Search Point Config Parameters In addition to exposing functionality to the developer,

GrabbingSearchPointConfig this script can be conveniently used for prototyping
Left Hand Grab Ir BHandGrabintera ® as you work on adding features to the package. You
Right Hand Grab B HandGrablintera ® can simply invoke your new features from the UTM’s

LookingInDirectionOfSearchPointConfig Start or Update functions (a benefit of inheriting from
Xr Camera = CenterEyeAnchi ® Monobehaviour), so that you can more easily debug
Max View Distanc 10 them.

g 1 15

NearbySearchPointConfig Any core features to the package that are intended to
Xr Camera mCenterEyeAnch: © be invoked in some way during runtime can be done
Max Detection Dis 10 SO through the UTM.

Max Det dAm 3
PointingSearchPointConfig

Right Hand A RightHand (Han ®

Left Hand ALeftHand (Hand ®

Max Point Distanc 30

Add Search Point

https://docs.unity3d.com/6000.1/Documentation/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/6000.1/Documentation/Manual/UsingTheInspector.html
https://docs.unity3d.com/6000.1/Documentation/ScriptReference/MonoBehaviour.html

Universal Text Prompter & Additional Scripts

The final feature of Universal Text involves making this description available as an input prompt
for virtual assistants. Using the output of our scripts, user’s could prompt an LLM with a question
such as “Is this safe to eat? If not, which one of these should | use for disposal?” (referring to
the UTS output example above). A simple script named Universal Text Prompter would
append the textual description at the end of the user’s question and prompt a local instance of
Llama 3 (using a simple API call). This output could be returned and displayed to the user within
Unity.

User voice input can be captured using OpenAl’'s Whisper API for voice-to-text transcription. We
would need to build a simple demo voice recognition script, named Universal Text Voice, that
activates either when the user says a key phrase or makes a gesture. It would then use Whisper
to transcribe text from the Quest microphone, and pass it to the Universal Text Prompter. The
Prompter would get a response from Llama 3 and display the output in Unity.

Running Llama 3 locally on Windows

https://medium.com/@renjuhere/llama-3-running-locally-in-just-2-steps-e7c63216abe7

Acceptance Criteria

Listed below are more general, overarching criteria for what the software should accomplish.
These criteria will become more specific and technical over time.

1. Universal Text can display a detailed text description of a virtual environment, and
describe how the user interacts with it (for a certain amount of preset gestures).

2. This process can occur rapidly, so that from an observer’s point of view, the text
description is always up-to-date with what is happening in the virtual environment.

3. Avirtual assistant demo has been created, where users can prompt an LLM that runs
on-device. The assistant should be able to produce accurate and helpful answers that
take into consideration the virtual environment of the user.

4. The finished software package is hosted on GitHub, and is easily importable into a new
Unity Project using the Package Manager.

Resources Required

A team of 5-10 developers is the projected team size for this project.

Meta Quest 2 and 3 headsets are required for testing the project in Unity. We may need 2-3 total
headsets available to be used by the team during work sessions/accessible from a locker to be
used on developer’s own time within the team space. Not all headsets are required to be the
more expensive Quest 3: hand tracking functionality should be the same across models

	Universal Text
	Table of Contents
	
	Introduction
	
	Technical Specification
	Tech Stack
	The Real-Time Text Representation (Our Goal)
	Universal Text Tag
	Overview
	Fields
	Description: string
	Attributes: List<Attribute>

	Implementation

	Universal Text Scanner
	Overview
	Implementation

	Universal Text Manager
	Overview

	Universal Text Prompter & Additional Scripts

	
	Acceptance Criteria
	Resources Required

