
Question 1

In lecture, we saw that in order to run a C program (e.g., hello.c), we first need to run
the command make hello, and then run the command ./hello.

a)​ What does running make hello do?
b)​ What does running ./hello do?
c)​ What might happen if you were to run ./hello without first running ​

make hello?

Answers

a)​ TODO
b)​ TODO
c)​ TODO

Question 2

In your own words, what does it mean for a function to have

a.​ arguments?
b.​ a return value?
c.​ side effects?

For each of (a), (b), and (c), give one example.

Answer

a.​ TODO
b.​ TODO
c.​ TODO

Question 3

Recall that, in lecture, we saw the following two blocks of code, both of which print the
same output.

Version 1 Version 2

if (x < y)
{
 printf("x is less than y\n");
}
else if (x > y)
{
 printf("x is greater than y\n");
}
else if (x == y)
{
 printf("x is equal to y\n");
}

if (x < y)
{
 printf("x is less than y\n");
}
else if (x > y)
{
 printf("x is greater than y\n");
}
else
{
 printf("x is equal to y\n");
}

These are really just the C equivalents of the following two blocks of Scratch code.

Version 1 Version 2

a)​ Why, in C, do we use two equals signs (==) when we write else if (x == y),

whereas in Scratch we use just a single equals sign (=) in ?
b)​ Why is Version 2 of the code, whether implemented in Scratch or in C, arguably

better designed than Version 1?

Answers

a)​ TODO
b)​ TODO

	Question 1
	Answers

	Question 2
	Answer

	
	Question 3
	Answers

