
Reasons for compiling this document
1.​Prevent miscommunication about the intended outcome of the refactor.
2.​Allow developers to give feedback on whether this is an improvement.
3.​Identify any cases that may have been missed in the oral discussion.

Goals

1.​To enhance the readability and discoverability of the frontend.
2.​To ease the creation of new tests.
3.​Improve test coverage significantly.
4.​Reduce tight couplings throughout the code base.
5.​Follow good engineering principles by ensuring files have single

responsibility, deterministic naming, and deterministic locating.

Guidelines

1.​JavaScript file names use CamelCase.
2.​Directory names and HTML file names use under_scores.
3.​Shared services go in the lowest common ancestor (LCA) of the files which

depend on them -- unless a minority of files in the LCA's subtree depend
on them, in which case they should go into 'common' instead.

4.​Controllers and directives should be thin. While doing the refactor, it
is fine to break existing controllers into additional services/directives
and add these to the relevant folders.

5.​Any services which communicate to backend controllers using $http must
end with ‘BackendApiService’ and only those services may correspond to
backend controllers.

6.​Directive names in Angular should not end in “Directive” despite their
corresponding filenames ending in directive. For instance,
‘CollectionNodeListDirective’ would have its directive called
‘collectionNodeList’.

7.​Services may go in pages/ if their only purpose is to maintain state
that’s specific to a particular page. However, any services that are used
by more than one page should go in domain/. Services may not go in
components/.

Definitions of top-level folders

●​ attributes: These are reusable HTML attributes used in directives and
controllers.

●​ components: These are reusable directives (HTML) tags used in other
directives and controllers.

●​ domain: This represents all of the data structures and services which
represent the frontend functionality.

●​ pages: This is a structure which reflects the actual frontend structure
and layout that users of Oppia see and use (e.g. the gallery page,
exploration editor, etc.)

Migration plan

1.​Prerequisites: bring in #1171 (widget-answer-views-rebased).
2.​Pull individual components/services into their individual files.
3.​Move all files to the new structure. (For this and the previous stage,

stage, don’t bother about internal refactoring, etc. The aim of getting
this step done as quickly as possible is to enable different people to do
the refactoring/tests for each component in parallel.)

4.​In parallel (for each component): add tests, and then make the component
nice. Tests should be written prior to the refactor.

Moving files to the new structure

1.​Move the stuff that’s currently in pages/ one level down.
2.​Create a new pages/ folder and move lots of stuff into it.
3.​Do the rest of the refactor piecemeal.

Structure of the contents of core/templates/dev/head:

●​ components // Shared directives go here
○​ alerts

■​ AlertMessageDirective.js
○​ attribution_guide

■​ attribution_guide_directive.html
■​ AttributionGuideDirective.js

○​ create_button
■​ CreateActivityButtonDirective.js
■​ create_activity_button_directive.html

○​ embed_modal

■​ embed_exploration_modal_directive.html
■​ ExplorationEmbedButtonService.js

○​ gadget
■​ GadgetDirective.js
■​ gadget_directive.html
■​ GadgetPanelDirective.js
■​ gadget_panel_directive.html

○​ share
■​ SharingLinksDirective.js
■​ sharing_links_directive.html

○​ forms
■​ HtmlSelectDirective.js
■​ html_select_directive.html
■​ image_uploader_directive.html
■​ ImageUploaderDirective.js
■​ ObjectEditorDirective.js
■​ Select2DropdownDirective.js
■​ SchemaFormBuilder.js

●​ Split this into different JS files for constituent
services and directives. All filters can be placed
inside a FormsFilter.js file.

■​ schema_form_builder.html
●​ Ditto (compared to SchemaFormBuilder.js).

○​ loading
■​ LoadingDotsDirective.js
■​ loading_dots_directive.html

○​ side_navigation_bar
■​ side_navigation_bar_directive.html
■​ SideNavigationBarDirective.js

○​ summary_tile
■​ CircularImageDirective.js
■​ circular_image_directive.html
■​ CollectionSummaryTileDirective.js
■​ collection_summary_tile_directive.html
■​ ExplorationSummaryTileDirective.js
■​ exploration_summary_tile_directive.html

○​ profile_link
■​ profile_link_image_directive.html
■​ ProfileLinkImageDirective.js
■​ profile_link_text_directive.html
■​ ProfileLinkTextDirective.js

○​ ratings
■​ RatingDisplayDirective.js
■​ rating_display_directive.html
■​ RatingFromFrequenciesDirective.js
■​ rating_from_frequencies_directive.html
■​ RatingFromValueDirective.js
■​ rating_from_value_directive.html

■​ RatingVisibilityService.js
■​ rating_visibility_service.html
■​ RatingComputationService.js

●​ domain
○​ collection

■​ CollectionBackendApiService.js
■​ CollectionNodeObjectFactory.js
■​ CollectionObjectFactory.js
■​ CollectionPlaythroughObjectFactory.js
■​ CollectionRightsBackendApiService.js
■​ CollectionUpdateService.js
■​ CollectionValidationService.js
■​ SkillListObjectFactory.js
■​ WritableCollectionBackendApiService.js

○​ dashboard
■​ DashboardBackendApiService.js

○​ editor
■​ undo_redo

●​ ChangeObjectFactory.js
●​ UndoRedoService.js

○​ Maintains a stack of undo/redo actions
○​ Actions registered by name as functions (do and

undo functions)
○​ Each function is associated with angular.copy’d

data
■​ This data is a commit-change JSON object

○​ The current ‘change list’ for the exploration can
be reconstructed by looking at the current action
stack stored within the undo-redo service

○​ ‘Do’ function passed into an ‘action call’ of the
change stack service is invoked immediately;
‘undo’ is invoked at a later time based on a
primary ‘undo’ function as part of the change
stack service

○​ Functionality to persist the change stack service
●​ MementoRepositoryService.js (maybe)

○​ Handles storing separate instances of a domain
object property and bind to them, such that one
variable represents the current value of the
property and the second variable represents the
transient/proposed state of the property (this
one is changed by the calling code)

○​ The service stores multiple bindings
simultaneously

■​ access
●​ EditabilityService.js

■​ navigation
●​ EditorContextService.js

●​ TabRouterService.js
○​ Binds incoming URLs to tabs

●​ TabManagerService.js
○​ Binds a name to setup/teardown functions for

initializing and deinitializing tabs of the
editor

○​ Client-provided data may be passed during a
switch-state

○​ Example to bind a tab:
tabManagerService.bind(‘EditorTab’, setupEditor,
teardownEditor); // All bindings happen in
ExplorationEditor.js, CollectionEditor.js, etc.
on init of the page

○​ Example to switch to a tab:
tabManagerService.switchTo(‘EditorTab’,
clientVariable);

○​ exploration
■​ ExplorationObjectFactory.js

●​ This wraps the data obtained from the backend in a JS
object so that it can be operated on by services in the
frontend.

●​ [Analogous to exp_domain.py]
■​ StateObjectFactory.js
■​ ExplorationBackendApiService.js

●​ Connects to backend controllers for serving/storing
explorations. We might actually need multiple of these
for each backend controller corresponding to an
exploration.

●​ Has methods like: fetch(), load(), which return items
from the backend (converted first to ExplorationObjects
using ExplorationObjectFactory.js).

■​ ExplorationGraphService.js
■​ ExplorationSnapshotBackendApiService.js
■​ ExplorationStatisticsBackendApiService.js
■​ ExplorationWarningService.js
■​ ExplorationDataService.js

●​ Maintains the single instance of the exploration object
loaded for the entire exploration editor

●​ This data is retrieved from backend API services
located in the domain folder

●​ Used by both learner and editor views
●​ Has methods like: get(), which returns a copy of the

object currently stored by this service in the
frontend.

■​ ExplorationRightsObjectFactory.js
■​ ExplorationRightsBackendApiService.js
■​ ExplorationRightsDataService.js

○​ summary

■​ ExplorationSummaryBackendApiService.js
●​ Gets exp summaries given search query
●​ Gets exp summaries by list of exp ids
●​ Gets exp summaries by a user id (‘my explorations’)

■​ ExplorationSummaryObjectFactory.js
■​ ExplorationSummariesDataService.js

○​ utilities
■​ StopwatchObjectFactory.js
■​ UrlInterpolationService.js
■​ IframeEventMessengerService.js
■​ DateTimeFormatService.js
■​ DebouncerService.js
■​ DeviceInfoService.js
■​ ExtensionTagAssemblerService.js
■​ FocusService.js
■​ HtmlStringService.js
■​ StringFilters.js​ ​ // This has multiple filters in it.
■​ ValidationService.js
■​ WindowDimensionsService.js
■​ WarningsService.js

○​ history
■​ HistoryDataService.js
■​ VersionsTreeService.js
■​ CompareVersionsService.js

○​ parameter
■​ ExpressionInterpolationService.js
■​ ExpressionEvaluatorService.js
■​ ExpressionParserService.js

○​ suggestion
■​ ...

○​ feedback_thread
■​ FeedbackThreadObjectFactory.js
■​ FeedbackThreadBackendApiService.js
■​ FeedbackThreadsDataService.js

●​ ThreadStatusDisplayService goes into this; remove
actual styling from it (conversion from status to style
happens in feedback tab controller)

●​ pages (one folder per base URL)
○​ base.html
○​ footer.html
○​ footer_js_libs.html
○​ header_css_libs.html
○​ header_js_libs.html
○​ oppia.css

■​ Split into constituent CSS files and place alongside HTML
files which use them.

○​ about
■​ about.html

■​ About.js
○​ admin

■​ Admin.js
■​ admin.html

○​ collection_editor
■​ CollectionEditor.js
■​ collection_editor.html
■​ CollectionEditorNavbarBreadcrumbDirective.js
■​ collection_editor_navbar_breadcrumb_directive.html
■​ CollectionEditorNavbarDirective.js
■​ Collection_editor_navbar_directive.html
■​ CollectionEditorStateService.js
■​ collection_editor_pre_publish_modal_directive.html
■​ collection_editor_save_modal_directive.html
■​ editor_tab

●​ CollectionEditorTabDirective.js
●​ collection_editor_tab_directive.html
●​ CollectionNodeCreatorDirective.js
●​ collection_node_creator_directive.html
●​ CollectionNodeEditorDirective.js
●​ collection_node_editor_directive.html
●​ CollectionSkillListDirective.js
●​ collection_skill_list_directive.html
●​ CollectionLinearizerService.js

■​ history_tab
●​ CollectionHistoryTabDirective.js
●​ Collection_history_tab_directive.html

■​ settings_tab
●​ CollectionDetailsEditorDirective.js
●​ collection_details_editor_directive.html
●​ CollectionSettingsTabDirective.js
●​ collection_settings_tab_directive.html

■​ statistics_tab
●​ CollectionStatisticsTabDirective.js
●​ collection_statistics_tab_directive.html

○​ collection_player
■​ collection_player.html
■​ CollectionPlayer.js
■​ Collection_node_list_directive.html
■​ CollectionNodeListDirective.js

○​ contact
■​ contact.html

○​ dashboard
■​ Dashboard.js
■​ dashboard.html
■​ create_activity_modal_directive.html
■​ upload_activity_modal_directive.html
■​ CollectionCreationService.js

■​ ExplorationCreationService.js
○​ error

■​ disabled_exploration.html
■​ Error.js​

error.html
○​ exploration_editor

■​ exploration_editor.html
■​ ExplorationEditor.js
■​ save_exploration_modal_directive.html
■​ SaveExplorationModalDirective.js
■​ publish_exploration_modal_directive.html
■​ PublishExplorationModalDirective.js
■​ CodemirrorMergeviewDirective.js
■​ help_modal_directive.html
■​ post_publish_modal_directive.html
■​ welcome_modal_directive.html
■​ ParamChangesEditorDirective.js
■​ Param_changes_editor_directive.html
■​ ValueGeneratorEditorDirective.js
■​ state_diff_modal_directive.html
■​ editor_tab

●​ editor_tab.html
●​ EditorTab.js
●​ DeleteStateModalDirective.js
●​ delete_state_modal_directive.html
●​ StateNameEditorDirective.js
●​ state_name_editor_directive.html
●​ StateParameterChangeDirective.js
●​ state_parameter_change_directive.html
●​ StateEditorDirective.js
●​ state_editor_directive.html
●​ StateInteractionEditorDirective.js
●​ state_interaction_editor_directive.html
●​ StateStatisticsDirective.js
●​ state_statistics_directive.html
●​ StateGraphLayoutService.js
●​ StateGraphVisualizationDirective.js
●​ state_graph_visualization_directive.html
●​ state_responses_editor

○​ StateResponsesEditor.js
○​ state_responses_editor.html
○​ AnswerGroupEditorDirective.js
○​ answer_group_editor_directive.html
○​ ClassifierPanelDirective.js
○​ classifier_panel_directive.html
○​ FallbackEditorDirective.js
○​ fallback_editor_directive.html
○​ OutcomeDestinationEditorDirective.js

○​ outcome_destination_editor_directive.html
○​ OutcomeEditorDirective.js
○​ outcome_editor_directive.html
○​ OutcomeFeedbackEditorDirective.js
○​ outcome_feedback_editor_directive.html
○​ ResponseHeaderDirective.js
○​ response_header_directive.html
○​ RuleEditorDirective.js
○​ rule_editor_directive.html
○​ RuleTypeSelectorDirective.js
○​ rule_type_selector_directive.html

■​ feedback_tab
●​ FeedbackTab.js
●​ Feedback_tab.html
●​ ThreadTableDirective.js
●​ thread_table_directive.html
●​ CreateThreadModalDirective.js
●​ create_thread_modal_directive.html

■​ history_tab
●​ HistoryTab.js
●​ history_tab.html
●​ RevertModalDirective.js
●​ revert_modal_directive.html
●​ VersionDiffVisualizationDirective.js
●​ version_diff_visualization_directive.html

■​ preview_tab
●​ preview_tab.html
●​ PreviewTab.js
●​ preview_set_parameters_modal_directive.html

■​ settings_tab
●​ settings_tab.html
●​ SettingsTab.js
●​ make_exploration_community_owned_directive.html
●​ MakeExplorationCommunityOwnedDirective.js
●​ nominate_exploration_modal_directive.html
●​ NominateExplorationModalDirective.js

■​ statistics_tab
●​ statistics_tab.html
●​ StatisticsTab.js
●​ state_statistics_modal_directive.html
●​ StateStatisticsModalDirective.js
●​ BarChartDirective.js

○​ exploration_player
■​ exploration_player.html
■​ ExplorationPlayer.js
■​ learner_local_nav.html
■​ LearnerLocalNav.js
■​ AnswerClassificationService.js

■​ LearnerParamsService.js
■​ StateTransitionService.js
■​ StopwatchProviderService.js
■​ answer_feedback_pair_directive.html
■​ AnswerFeedbackPairDirective.js
■​ exploration_skin_directive.html
■​ ExplorationSkinDirective.js
■​ progress_dots_directive.html
■​ ProgressDotsDirective.js

○​ forum
■​ forum.html

○​ library
■​ Library.js
■​ library.html
■​ LibraryFooter.js
■​ search_bar_directive.html
■​ SearchBarDirective.js
■​ search_results_directive.html
■​ SearchResultsDirective.js
■​ ActivityTilesInfinityGridDirective.js
■​ activity_tiles_infinity_grid_directive.html

○​ moderator
■​ moderator.html
■​ Moderator.js

○​ notifications_dashboard
■​ notifications_dashboard.html
■​ NotificationsDashboard.js

○​ preferences
■​ preferences.html
■​ Preferences.js

○​ privacy
■​ privacy.html

○​ profile
■​ profile.html
■​ Profile.js

○​ signup
■​ signup.html
■​ Signup.js

○​ splash
■​ Splash.js
■​ splash.html

○​ teach
■​ teach.html
■​ Teach.js

○​ terms
■​ Terms.html

○​ thanks
■​ thanks.html

■​ Thanks.js
●​ attributes

○​ AngularHtmlBindDirective.js
○​ CustomPopoverDirective.js
○​ FocusOnDirective.js
○​ MathjaxBindDirective.js
○​ SelectOnClickDirective.js

●​ Oppia.js // Contains all initializations/setup, such
 // as $interpolateProvider and Angular configs.

Notes

●​ The above structure does not include any files in extensions/.
●​ Add a test to ensure that there are no collisions in filenames within a

single page (or in 'common') -- i.e. no two files anywhere in the subtree
share the same name. Maybe this test could enforce additional aspects of
the naming scheme, too.

●​ Learner view "play state" should be kept combined and isolated so that it
may be persisted for later use. Users should be able to pause their
progress in an exploration and continue where they left off later. This
should be filed as a separate issue from the refactor and also needs to
have some investigation as to how this will be affected by collections.

●​ Constants and animations may go in any JS files where they are
reasonable.

●​ Extract controller and service bodies from their respective controller
and factory calls. This is similar to the following style guide
principles:

○​ https://github.com/johnpapa/angular-styleguide#style-y032
○​ https://github.com/johnpapa/angular-styleguide#style-y052

●​ Large/expensive logic is allowed to go into a directive if the logic is
related to the link or compile aspects of a directive, such as in #1329.

●​ Whether a directive should use aThe ‘GLOBALS’ pattern will be replaced
with a series of Angular constant creation calls instead.

○​ Ex: oppia.constant(‘ALLOWED_GADGETS’,
JSON.parse(‘{{ALLOWED_GADGETS|js_string}}’));

●​ explorationContextService.js, UrlService.js
○​ Replace with globals served from the backend controllers which

specify whether it's in iframe, the page context, and the
exploration ID.

●​ Remove all duplicate URLs and have feconf.py (or some other, better file)
be the single source of truth for all URLs (these URLs are passed to the
frontend and specified as Angular constants; then they are used in
conjunction with the UrlInterpolationService)

●​ Refactor state graph directive.
●​ Rename /explore to /exploration & redirect
●​ Rename /create to /exploration_editor & redirect
●​ Rules for the linter wherein it crawls through entire frontend and

ensures following:

https://github.com/johnpapa/angular-styleguide#style-y032
https://github.com/johnpapa/angular-styleguide#style-y052

○​ For every frontend filename which ends in ‘_directive.html’ have a
corresponding ‘...Directive.js’ file with the converted camelcase
prefix

○​ All HTML filenames are underscore and lowercase.
○​ All JS filenames are UpperCamelCase.
○​ All JS filenames end in either Service, Directive, Filters, unless

they correspond to a controller.
○​ Each folder and subfolder in pages/ has one HTML and related JS

file named after the folder (e.g. exploration_editor ->
exploration_editor.html and ExplorationEditor.js)

○​ Ensure throughout entire frontend there are no duplicate file names
●​ Refactor existing developer documentation and create high-level concept

diagrams to help explain the architecture and emphasize key services or
components which contribute to some vertical slice of Oppia (such as
interactions, rules, the exploration editor, etc.)

●​ controller, link, or compile construct should follow the standards

defined by Angular, which is explained well here:
http://stackoverflow.com/questions/12546945.

Error directive:

<error-messages value=”data” validator=”function”
has-error=”isValidForm”></error-messages>

Template:
<[errorMessage]>

JS:
for (var i = 0; i < $scope.value.length; i++) {
 $scope.$watch($scope.value[i], …

The error directive sends the error message to an underlying ErrorService to
help with form save buttons as well as grabbing the error message in order to
display it.

Todos

http://stackoverflow.com/questions/12546945

