RFC 677 REVIEW: Unifying the code
Insights experience data generation
experience

Recommender: Joel Kwartler

Date: Apr 27, 2022

Status: WIP

Decider: @project lead: Chris Warwick

Input providers: Leo Papaloizos Coury Clark Chris Warwick Vova Kulikov Cristina Birkel
Justin Boyson Alicja Suska Felix Becker

Approvers (please review by EOD YYYY-MM-DD): Alicja Suska , Joel Kwartler

Approvals:

Team: Code Insights

Summary

Search-based Code Insights run either over an explicit list of repos or all repos. If the former, the
data is generated by frontend just-in-time calls to the API. If the latter, the data is generated on a
delay in the backend. These methods have different costs and benefits. We need to unify them
to unblock developer velocity so we don’t have to build two versions of new features, and also to
get the benefits of each across all insights while removing some of these costs.

Background

When we built code Insights we started with just-in-time, frontend-only insights. We then built a
backend to handle the scale of all repos and greater numbers of datapoints. These methods
have different costs and benefits.

Problem

The differences in these data engines create the following problems:

1) Hard to build new features for all users (filters only exist on backend-persisted insights,
even though a user won'’t understand why and there’s not logical reason — just a
technical one — why you can’t filter insights over 10 explicit repos down to just 1-2 repos)

2) Hard to debug customer issues (have to split which data engine it is)

mailto:joel@sourcegraph.com
mailto:christopher.warwick@sourcegraph.com
mailto:leo.papaloizos@sourcegraph.com
mailto:coury@sourcegraph.com
mailto:christopher.warwick@sourcegraph.com
mailto:vova@sourcegraph.com
mailto:cristina.birkel@sourcegraph.com
mailto:justin.boyson@sourcegraph.com
mailto:alicja@sourcegraph.com
mailto:felix@sourcegraph.com
mailto:alicja@sourcegraph.com
mailto:joel@sourcegraph.com
https://about.sourcegraph.com/handbook/communication/decisions#roles-in-decision-making-raid-framework
https://about.sourcegraph.com/handbook/communication/decisions#roles-in-decision-making-raid-framework
https://about.sourcegraph.com/handbook/communication/decisions#roles-in-decision-making-raid-framework
https://about.sourcegraph.com/handbook/communication/decisions#roles-in-decision-making-raid-framework
https://docs.google.com/presentation/d/1feAl1na3R3A56c_WKvWddgZB_bhk69Qqq6GWr_ISYuM/edit#slide=id.g1161442b32e_0_939
https://docs.google.com/presentation/d/1feAl1na3R3A56c_WKvWddgZB_bhk69Qqq6GWr_ISYuM/edit#slide=id.g1161442b32e_0_939
https://sourcegraph.slack.com/archives/C01NDS6BVBQ/p1651153118623059

3) Users have a slow loading experience (insights that aren’t persisted take longer to load
on large dashboards) — this includes CEs, who have articulated this as a pain point for
demos

Specifically, we want to solve the following problems (in priority order):

1. Unlock live preview for all insights, even those running over all repositories

2. Cache/load insights that have run before faster, so the overall loading time of a

dashboard page before you see value is lower

You can see and use the filter panel on all insights

4. You can continue to collect future + past data on all insights (rather than re-running 7
points in time from today; run the original number of points and then continue collecting
shapshots)

w

Proposal

This is the product-level section of this proposal. The goal is to get to a set of Decisions for
Engineering that engineers can then lead.

When we complete this initiative, our goals are the following. “All insights” refers to “all code
insights that are search or compute based” (so all current types).

It's okay if we need to iteratively roll out to first search-based and then compute-based, or vice
versa, but ultimately we want to finish updating all types by the end of this work and during Q2.

| was intentional in the below point to use slightly awkward phrasing to avoid implying or
anchoring us to specific technical solutions. These are problems we are trying to solve, and
perhaps there are other solutions beyond “Make it do what the backend/frontend insight type
does” we’ll want to explore, so | avoided phrasing things like that.

WIP Product Decisions for Engineering (Goals we want to achieve):

1. All insights data loads equally as fast as the fastest insights’ data loads now.

a. This is a non-engineering-prescriptive way of saying, for example, that datapoints
are cached after creation such that loading dashboards loads the data from a
cache rather than hitting our API, because backend-cached insights data is the
fasted to load currently.

b. But maybe that's not what we want to do to speed this up, and | don’t care about
the technical choices as long as the goal — speed up loading, which is very slow
for just-in-time generated insights.

2. You can always live preview results on the creation screen for any insights.

a. Maybe we accomplish this by streaming? Maybe we accomplish this with some
frontend API hits still while we load the persisted on the backend? | don’t care,
but let's make this happen.

b. “You can live preview” # you can live preview the end state of the insight. If we do
this via streaming, for example, it’s fine if this livestreams progressively more
complete results (but still takes hours to finish)

c. Arequirement is that live preview always runs — you shouldn’t be blocked from
live previewing because there are other insights loading in the background
somewhere.

d. Stretch goal: Ideally, you don’t then “lose” your live preview:

i. If you see live preview data and then create the insight and get taken to
the dashboard page with it, it's not ideal if the insight “starts over from
nothing”.

ii. It's okay if this is a stretch goal — from my POV this seems technically
hard

“Small insights” (by repo count) load faster than “large insights”

a. Right now, all persisted insights load in parallel and slow the total load time of
any down. If you create an insight over a single repo, it would be a failure of this
effort if we end up creating a system that loads insights we used to load live over
the course of hours.

. You can use our filter panels on all insights.

a. This feels like something we’ll get for “free” but noting it anyway.

. All insights should show current — meaning <24 hours old — point-in-time values,
and save ongoing snapshots at the existing persisted-insight snapshot frequency
(whatever the user set as their interval). They should also all show the same
number (ideally/default assumption: 12) of backfilled datapoints.

a. A fancy way of capturing the behavior we/users like about backend insights

. We no longer have to make tradeoffs in the code path/feature engineering/data
results between insights over scoped lists of repos and insights over all repos for
the below features
a. (This is sort of the definition of unifying, but just to be clear)
b. We don’t have to consider “over some repos” and “over all repos” as different
states in building new features like, for example:
i. New filter types (when applicable to all insights)
ii. Per-series repo lists (running a series or filtering a series individually over
repos, not just the whole chart) — for search insights
iii. New chart types — for all insight types, such as bar chart, heatmap chart,
and calculating a diff rather than cumulative
iv. New integration points with monitoring/notebooks/batch changes — for all
insight types, specifically:

1. Embedding insights into notebooks
2. Setting up a monitor trigger to fire when an insight reaches a
certain threshold, or on a specific time cadence
3. Setting up a monitor action to send relevant content (screenshot of
insight still TBD) in the action for that trigger
4. Ability to go to a relevant batch change template — for all
applicable insight types (capture group and search based — this
seems easy now, just trying to list everything. It just needs to
preserve/convey the search query)
v. Backfilling performance pings (for all insight types)
vi. Drilldown features / panels (early work in
B RFC 561 WIP: Code Insights - Improve Drilldown Capability)

Some future possible work/ideas that might be worth keeping in mind so we don’t engineer
ourselves into a corner:

1. Allowing per-series repo/context filters, or allowing different series on the graph to run
over different sets of repos

2. Allowing you re-run an insight if the data seems incorrect, if we have a bug, or if you
connect other repos.

Some things that are explicitly not requirements:

1. We don’t need to run all insights over all repos — we still want to let users tell us if they
care about only a specific group of repositories.

Update 2022-05-24 Design problem/decision:

When we unify insights, this means that insights running over some repos will:
1. Still show a live preview of 7 datapoints
2. But, after creation, have 12 datapoints (the 7 originally shown, right now, and 5 more
further back in time as well)

Given customers are used to setting their granularity so the live preview total time covered
matches what they need, should we make any design/Ul communication updates to
communicate that #2 is actually what will happen?

1. If we don’t do anything: you want 1 year of data, you probably set granularity = 2
months, you live preview 1 year, but then you backfill 1.4 years / see 1.4 years whenever
you view the insight

2. If we do communicate this: you want 1 year of data, perhaps you’d rather have 1 year via
1 month granularity, even if the live preview only shows 6 months

https://docs.google.com/document/u/0/d/1kgBu3aWy0XMJYjW0lwRTmVm37fwbqU-EMwIzfUWtYHw/edit

How can/should we update our live preview or Ul communication to account for this?

Joel Kwartler is against adding 5 more backfilled points to live preview as this will double the
time live preview takes to load. One possible option is to double the spacing of the live preview
(so it collects total time range) but we’d have to communicate that when you save the insight, it’ll
fill in with more datapoints. Another option is to do nothing, and bonus, the user will get more
backfill data than they were expecting.

Joel Kwartler my preference: | think the best option is a clean and simple
design/communication solution in the Ul that tells the user that information most effectively, but
the second best option is potentially to do nothing.

Definition of success

This work is successful if we achieve the above-listed goals. Qualitative measures that these
goals drove business impact are:

1. Customers no longer run into issues or questions between persisted-insight and
just-in-time insight functionality differences

2. CEs comment/no longer worry about preloading dashboards in the background for
just-in-time insights

3. Code insights feel “faster” (CE/product/user feedback) because you can always get live
previews.

Update 2022-05-25 Live Preview For All Repos Options:

e Run the live preview over a small subset of repos. Initially | think we would need to ask
the user to which repo(s) to use for the preview because if there are many we may not
have the knowledge necessary to programmatically pick repos that are relevant to the
query.

o Benefits

m Lowest engineering effort because it fits the same model of preview we
currently use.

m We already know the performance characteristics and likelihood of
returning results to the user quickly. Size of the selected repo(s) would be
the factor that would most impact speed.

o Concerns
m Initially additional input from the user is required

mailto:joel@sourcegraph.com
mailto:joel@sourcegraph.com

Unknown if a subset of repos will provide the user with enough detail to
commit to creation of the insight.

Unknown if the user would understand that the preview is run only on a
subset of repos.

Unknown if we could programmatically select relevant repos on the users
behalf.

e Run live preview over all repos, and limit the number of data points lower than the

current 7

o Benefits

Most accurate representation of the insights data for the points returned

o Concerns

Too resource intensive and low probability of returning meaningful results
to the user quickly. Outside of the installs with only very few repos the
number of queries needed to generate the data would quickly grow
beyond the number that could be run.

e Run live preview over all repos, and stream results back to the Ul
o Benefits

Fastest time to putting initial data on the screen

o Concerns

Too resource intensive, outside of the installs with only very few repos the
number of queries needed to generate the data would quickly grow
beyond the number that could be run.

At any given time before 100% completion it won’t be clear what the data
on the chart represents. Is this data point complete? Which repos have
been counted so far?

High contention on the sourcegraph instance. This live preview would
essentially block all other code insights.

High waste. This would take a lot of work to calculate, and the nature of
live previews is ephemeral. We would likely be throwing a lot of these out.

	RFC 677 REVIEW: Unifying the code insights experience data generation experience
	Summary
	Background
	Problem
	Proposal
	WIP Product Decisions for Engineering (Goals we want to achieve):
	Update 2022-05-24 Design problem/decision:

	Definition of success
	Update 2022-05-25 Live Preview For All Repos Options:

