
Revisiting Process-per-Site
This Document is Public

Author: haraken@
2023 Feb

Motivation
Currently each renderer process has its own blink::MemoryCache. When you open three
tabs for three Google Docs, Chrome creates three same-site renderer processes, each of
which has its own blink::MemoryCache.

When you open the first Google Docs, the renderer process creates a blink::MemoryCache
from scratch. It loads scripts, fonts, stylesheets, images etc from the disk cache or the
network and decodes the resources into the blink::MemoryCache. The cached, decoded
resources can be reused only for the upcoming same-site navigation that happens in the
same tab. When you click a link of another Google Docs, it opens in another tab, which is
hosted by a different renderer. The renderer needs to create its blink::MemoryCache from
scratch.

If we can share blink::MemoryCache among all same-site renderers, the second and later
same-site renderers can load pages faster. This improves the global LCP. Also it reduces
Memory.Renderer.PrivateMemoryFootprint because the same-site renderers can share one
cache. This enables us to cache more resources without regressing
Memory.Renderer.PrivateMemoryFootprint, which contributes to improving the global LCP
more.

With this motivation, we are brainstorming the idea of sharing blink::MemoryCache among
same-site renderers.

However, this brings one question: Can we go beyond? Instead of sharing
blink::MemoryCache, what happens if we load same-site main documents in the same
renderer process (until the number of main documents in the process reaches some
threshold)?

Proposal

https://source.chromium.org/chromium/chromium/src/+/main:third_party/blink/renderer/platform/loader/fetch/memory_cache.h;l=69?q=blink::memorycache
https://docs.google.com/document/d/1jI-Itz-_kr8euAdZZI_cm0XY18HsIkc18XFiEL32jRQ/edit
https://docs.google.com/document/d/1jI-Itz-_kr8euAdZZI_cm0XY18HsIkc18XFiEL32jRQ/edit


The proposal is to run a Finch experiment to host same-site main documents in the
same renderer process until the number of main documents in the process reaches
some threshold and measure the performance / memory impact using UKM.

This is close to the Process-per-Site mode. According to this document:

Process-per-site: This model consolidated all instances of a given site into a single
process (per profile), to reduce the process count. It generally led to poor usability when
a single process was used for too many tabs. This mode is still used for certain limited
cases (e.g., the New Tab Page) to reduce the process count and process creation latency.
It is also used for extensions to allow synchronous scripting from a background page.
Note that having a single process for a site might not be guaranteed (e.g., due to multiple
profiles, or races).

The difference between the proposal and the Process-per-Site mode is that the proposal
enforces a limit about the number of main documents hosted by one renderer to mitigate
the performance concerns. We can run Finch experiments for multiple thresholds (e.g., 2, 4,
6) and measure the performance / memory impact using UKM.

Evaluating the performance / memory impact using UKM is important because it may
improve performance of some websites but regress performance of other websites. For
example, for Google Workspace, performance isolation matters for their responsiveness
and they enable Origin Isolation. If we host two Google Docs in one renderer, it may
improve LCP but is likely to regress responsiveness. However, the proposal may be a
performance / memory win for most websites in the long tail. UKM will tell us the result.

Specifically:

● Introduce a new ProcessReusePolicy to share a renderer process among same-site
main documents until the number of the main documents reaches a threshold.

● Tweak the process selection policy in
RenderProcessHostImpl::GetProcessHostForSiteInstance and enable the
experiment.

● Exclude Origin Isolation and COOP cases from the experiment.

The expected results are:

● For some heavy websites: LCP improves. PMF improves. FID and responsiveness
metrics regress. CLS stays the same.

● Most websites: LCP improves. PMF improves. FID and responsiveness metrics
slightly regress (how much?). CLS stays the same.

https://chromium.googlesource.com/chromium/src/+/main/docs/process_model_and_site_isolation.md#historical-modes
https://chromium.googlesource.com/chromium/src/+/main/docs/process_model_and_site_isolation.md#origin-isolation
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/site_instance_impl.h;drc=81432161ba703f643bb87a78a3e54540f5536c49;l=171
https://source.chromium.org/chromium/chromium/src/+/main:content/browser/renderer_host/render_process_host_impl.cc;l=4538?q=processreuse



