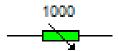
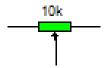

Resumen electricidad examen

- Las resistencias sirven para regular la corriente, al ponerlas conseguimos que pase menos. Es como cuando ponemos un grifo en una tubería para controlar que salga más agua o menos agua.
- Podemos usar estos dos símbolos


- Como las resistencias son chiquitujas y los cacharros por dentro están llenos de polvo, no se podría leer bien su valor si estuvieran escritas con números. Así que usamos el código de colores.
- Aquí tienes un ejemplo de lo que se puede preguntar.
- Como tolerancia sólo pondré Oro o plata que son, respectivamente, 5% y 10%

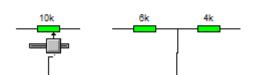
Sabiendo el color dar los valores

0	negro		<u>marrón</u>	<u>verde</u>	<u>marrón</u>	<u>plata</u>
1	marrón		1	5	0	10%
2	rojo	v. nominal	150	ohmios		
3	naranja	tolerancia	10%			
4	amarillo	v max	150	+	15	165 ohmios
5	verde	v mín	150	-	15	135 ohmios
6	azul					
7	violeta					
8	gris		Sabiendo el valor decir los colores			
9	blanco		1000 ohmios		5%	
			marrón	negro	rojo	oro
			1	0	*00	5%

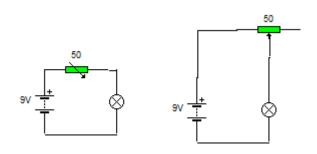

Resistencia variable

- Una resistencia variable puede cambiar su valor entre 0 y un valor máximo. Por ejemplo una resistencia variable de 1000 Ω puede variar su valor entre 0 y 1000 Ω
- Tiene dos terminales
- Su símbolo es este

Potenciómetro


- Un potenciómetro tiene tres terminales
- Su símbolo es este

- Se comporta como si tuviéramos dos resistencias que se reparten el valor que indica



En el primer caso como tenemos el botón a la mitad, es como si tuviéramos dos resistencias de 5000 Ω

En este caso como tenemos el botón más desplazado a la derecha es como si fuera una resistencia de 6000Ω y otra de $4000~\Omega$

 Si sólo usas dos terminales de un potenciómetro se comporta como una resistencia variable

En el primer circuito si muevo el botón de la resistencia variable la resistencia varía entre cero y 50

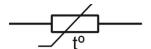
En el segundo circuito al mover el botón del potenciómetro, la resistencia entre el terminal central y el de la izquierda también varía entre cero y 50.

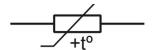
 En cambio si usas un potenciómetro entre sus terminales extremos la resistencia es constante igual al valor máximo.

Resistencias variables con la luz (LDR)

- No tienen un valor constante, depende de la luz que les dé
- Cuánta más luz les da menos resistencia tienen, más fácilmente circulan los electrones
- Su símbolo es este

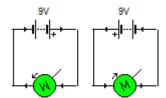
Resistencias que varían con la temperatura (TERMISTORES)

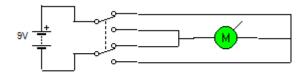

- No tienen un valor constante, depende de la temperatura exterior
- Hay dos tipos
 - a) PTC (Directamente proporcional)


A más temperatura más resistencia y viceversa

b) NTC (Inversamente proporcional)

A más temperatura menos resistencia y viceversa

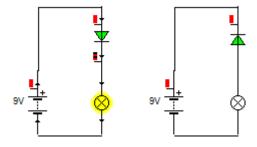

- Estos son los símbolos



Motores

 Los motores cambian su sentido de giro si cambias la polaridad de la pila a la que los conectas

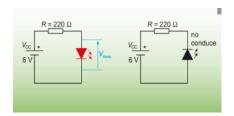
- Este circuito consigue cambiar la polaridad a la que está conectado el motor cuando pulsamos el interruptor



Diodos

- Los diodos son componentes que sólo dejan pasar la corriente en un sentido.
- Este es su símbolo

 Deja pasar corriente cuando el ánodo está más cerca del polo positivo y bloquea en el otro sentido. Mira el ejemplo.



Diodos LED

- Hay un tipo especial de diodos, que además de hacer su función de "válvula" se iluminan cuando SÍ dejan pasar la corriente
- Antes los usábamos sólo para señalizar, como la lucecita del teclado de las mayúsculas o la de encendido del ordenador.
- Ahora los sabemos hacer muy brillantes y los usamos para casi todo: linternas, bombillas de casa, televisores, pantallas de móviles, semáforos, etc.
- Son baratos, duran mucho, se calientan poco (no desaprovechan energía).
- Su símbolo

- No olvides que además de iluminar son diodos, así que dejan pasar en un sentido y en el otro no (la resistencia es para que no les entre demasiada corriente)

