MadlLBOT!

Introduction

MalBot! was designed for the University of California San Diego as a ECE 118 (Computer
Interfacing) Project by Alexander Kissinger (Hardcodingisbetter.tumblr.com). It was inspired by
such products such as the Wifi Pineapple (developed by Hak5:
http://hakshop.myshopify.com/products/wifi-pineapple), and was conceived under the idea that
pen-testing should be mobile, smart, automated, and on a open-source (and itself hackable)
electronic platform.

http://hakshop.myshopify.com/products/wifi-pineapple

Table of Contents

Goal of the Project/Notes from the

Author.............cooeevnin 05

The MalBot! Anatomy.....coviviiiiiiiiiiii it it iiiieeeeenn 06
Block

DIGGIAM...eeveeeeiee e e eeee e e eete e e e et e e et e e eeaeeeeateeeasaneeesnnneeennns 07

The Raspberry Pi Computer......c..oviiiiiiiiiiiiiiiiiiiiiiinnnnnn. 08
Battery Charging....ouuiiiiiiiiiiiiiiiiii e eee 09
Turning MalBot! On...ceuiiiiiiii e 09
L= = Vot] T 10
General Usage.....iiviiuiiiiiiiiiiiiiiiiiieeettneeeeeeeennnnnnaeenns 10
MalBot! Buit-in Attack.......covviiiiiiiiiiiiiiiiiiiiiiiiiiiiie 11
Maintanence/Warnings.ccvuiiiiiiieiiiieiiieteniereneeeeneeeennn. 12
Parts List...ooeiiiiiiiiiiiiiiiiiiiii e 13
SCNEMATICS. ottt e 14
SOUICE COde. . uun ettt e e eeeaaaans 15

Goal of the Project

The goal of MalBot! was to make an automated yet easily customizable pen-testing robot that
can be communicated over the internet, out in the field. Because this is an
open-source/baseline product there is very limited built-in functionality.

MalBot! comes pre-installed with a Raspberry Pi version 2 board, with a Adafruit Protoshield
installed. MalBot! Comes with eight more actuators/peripherals: a TFT screen to debug MalBot!
on the fly, an LCD character display that display current/critical information about the system,
DC motors, a digital light sensor, a primary USB comm device 3G/WIFI (for comm with an
end-user), a secondary Atheros chipset based USB WIFI NIC (used for pen-testing), and two
power sources (one for computer and the other for the motors and TFT screen).

An open-source pen-testing Debian distribution, PWNPI (http://pwnpi.sourceforge.net/), comes
pre-installed on the Raspberry Pi’'s 16GB SD card, but of course this can be changed if desired
(WARNING: If you do install your own distrution other than the built-in one, you will have to find
a way to interface with the motors). There are two main components to the software. There is
the built-in pen-testing tools that is provided by PWNPI and there are the actuator interfacing
scripts developed specifically for MalBot!. More detail on these scripts will be discussed in the
Interfacing section.

If you choose to customize MalBot!, and you’re encouraged to do so, the product has been
simplified to abstract customization into two main layers. First, the Hardware layer can be
modified to add/remove actuators from the system (proximity sensors, microphones, etc.) and
can be easily installed into the Raspberry Pi’'s extended Protoshield and interfaced with the
GPIO library. The Software layer customization was designed to to extend off of the scripts
developed for MalBot! and is found in /root/Scripts. These are written in Python, use the GPIO
library, and are executed via SSH. As stated before there is limited functionality, but this project
was meant to get your hands dirty, so get hacking!

http://pwnpi.sourceforge.net/

MalBot! Anatomy

Overview

A.

16x2 Character LCD Display
Digital Light Sensing Circuit

1.5” TFT LCD Display

5V USB Battery

9.6V 1600mAh

Raspberry Pi version 2.0 Computer
DC Motors

@ "0 o0 T

Block Diagram

Legend:
5.6V NiMH
1600mAH Red - Power Source
Battery
I . .
Fm———————— e e e - Orange - Power Circuit
A | A
Voltage I 5V USB Voltage _
Regulating v Battery Regulating Green - Computer
Circuit TFTLCD Circuit .
T Display T Grey - Intermediate
v N v Circuit
Control | - Raspberry Pi Control)
Circuit [~ Computer Circuit White - Actuator
| |
| | . .
| | Dotted Line - Supplies
¥ v v ¥ Power
DC Motor 16x2 LCD MCP3304 DC Motor
Character ADC
Display Solid Line - Supplies
W Power and Control
Digital Light
Sensing
Circuit

This is a high-level view of the MalBot! system. The 9.6V Battery supplies power to the DC
Motors by running through a Voltage Regulating Circuit that outputs 5V~1A on an average load.
The power from these circuits then run into a Control Circuit that is ready to provide power to the
DC Motors when the Raspberry Pi sends a HIGH signal on its control line. The 9.6V Battery also
provides power to the TFT LCD Display directly, which has its own internal voltage regulating
circuit.

The Raspberry Pi itself is powered via USB by a 5V~1A MAX USB Battery. Both the 16x2 LCD
Character Display and Digital Light Sensing Circuit, as well as its intermediate circuits, are
powered and controlled by the Raspberry Pi’s internal power via GPIO/SPI/12C/etc.

The DC Motors are controlled via GPIO (HIGH/LOW values) and are isolated away from the
Raspberry Pi by means of a NTE3040 Optoisolator. A control signal will be sent from the
Raspberry Pi to the optoisolator on the Control Circuit that will instruct the DC Motors to move or
not. Be advised that there is not an H-Bridge unit on the Control Circuit, ergo the motors can/will
only move in one direction (this reflects on the Python code).

The Digital Light Sensing Circuit is interpreted by the MCP3004 ADC, which is powered by the

Raspberry Pi’s internal 5V power (via GPIO). The Raspberry Pi interfaces with the MCP3004 via
the SPI data protocol. The Digital Light Sensing Circuit is composed of an LDR and a Variable
Resistor that can be used to customly set the desired sensitivity.

16x2 Character LCD Display is also powered by the Raspberry Pi's 5V GPIO and directly
interfaces with the Raspberry Pi via GPIO

TFT LCD Display has its own on board “buck converter” that allows an input between 6V-12V
and is directly powered by the 9.6V battery.

The Raspberry Pi Computer

RASPBERRY Pl MODEL B

RCAVIDEO AUDIO LEDS USB

10 512MB RAM ¥ S
CPU & GPU HDMI
_

Z

The Raspberry Pi is a full ARM powered Linux computer. It comes preinstalled with PWNPI, an
open-source Debian-based pen-testing distribution. The Raspberry Pi works on two main levels:
the Hardware and the Software layer. The software layer can be accessed directly (using
keyboard, any of the video ports, or built-in TFT screen) or via the internet. The hardware layer
can be accessed through the GPIO Python library that is currently installed (SPI and 12C Python
libraries are also available).

More information on the Raspberry Pi’'s GPIO functionality can be found here:
http://elinux.org/RPi_Low-level_peripherals

The main site, along with the Raspberry Pi community, can be found here:
http://www.raspberrypi.org/

http://elinux.org/RPi_Low-level_peripherals
http://www.raspberrypi.org/

Battery Charging

MalBot! comes with two batteries:

1x 9.6V 1600mAh RC Car Battery
Powers: the DC Motors, TFT screen

1x 5.0V ~ 1A USB Battery
Powers: the Raspberry Pi, Char LCD display, Digital Light Sensor

Each Battery is replaceable with anything in the same voltage range, but have been specifically
chosen for it's size dimensions and weight. The 9.6V battery pack comes with it's own charger
and the USB battery stick can be plugged into any USB power supply on the input side. Charge
for at least three hours for the most optimal usage.

Turning MalBot! On

To turn on MalBot! on plug in the 9.6V battery pack’s male receiver into the corresponding
female receiver on the motor board, then plug a micro USB cable into the USB Battery Stick on
the output side, and plug in the micro receiver into the Raspberry Pi. If both batteries are
charged you will immediately see the LEDs on the Raspberry Pi start flashing, the TFT will
display show Linux booting, and the Char display light up.

If everything on the software-side is working properly, then Char display will output it's default
information consisting of the current environment’s luminosity and it's network information and
Keanu Reeves will display on the TFT screen.

Interfacing

When MalBot! boots up it's eth0 interface will have a short 10 second period where it will assign
it's an ip of 10.10.0.1 for debugging perposes. If you have a computer interfacing with MalBot!’s
ethernet port it will hold that IP until restarted. This can be double-check for the Char display will
output ethQ’s ip information.

After that 10 second period, MalBot! will try to attach itself onto any insecure network and get an
IP, which can be verified by looking at the Char display. If instead, you installed a 3G card as the
primary network interface, it will be dished an IP according to that. If you then register an IPv6
for MalBot!, no matter what internal IP (varying) MalBot! may have, you will always be able to
communicate via your IPv6 address. The primary means of communication is SSH, but of
course a webserver can be installed on MalBot! and communicated via (or something even
more clever). The login credentials are as follows:

Username: root
Password: toor

If all other means of interfacing do not suffice, you can always directly interface with MalBot!'s
USB ports and use it’s built in display.

General Usage

The general usage flow for MalBot! works in the following:
1. Turn MalBot! on.

a. When both batteries are plugged in you should see both LCD displays light up
and PWNPI boot up on the TFT Screen.

2. Tune the variable resistor on the digital light sensor to the desired sensitivity.

a. The digital light sensor is based on an 10-bit range which that gives ambient light
in values between 0 to 1023. This means that the variable resistor
(potentiometer) is quite sensitive.

b. The best way to tune the sensor is to put the cover (disguise) over MalBot!, get
the reading, and tune it to result a luminous reading of around 800, in its cover, in
a generally well lit room. This is because the demo code bases sets the
movement cut-off reading at 800.

c. You can find the luminos reading on the character display after bootup.

10

3. Log into MalBotl!.
a. After PWNPI boots, Keanu Reeves should display on the TFT screen. This
indicates that MalBot! is ready to receive communication from an end-user.
b. MalBot! will then try to log into an insecure network and display its network
information on the character display.
c. Use one of the above methods in the “Interfacing” section to log in.
4. Hack away!
a. You can start testing out MalBot!’s pen-testing abilities by either using PWNPI’s
built-in computer security testing software suite, using the built-in programmed
demo scripts, or by making your own scripts based off of the demo scripts.

MalBot! Built-in Attack

Performing an Automated Wifi Discovery and Sniffing Attack

Automated wifi discovery and sniffing are the two main scripts that are provided to test MalBot!.
They are located in the /root/Scripts/ folder and are named “findsignals” and “triangulation”. The
other files are dependencies for these two scripts, and will show themselves useful when writing
custom scripts. A basic auto-sniffing attack is done by performing the following, and can be seen

by the demo video: http://hardcodingisbetter.tumblr.com/post/52013137447/malbot-demo

1. Turn on MalBot!.
2. Log into to system via SSH.
3. Change into the “Scripts” directory and execute the “findsignals” script.

$ cd /root/Scripts/
$./findsignals
Cell 01 - Address: 00:00:00:00:00:20
Quality=61/70 Signal level=-49 dBm
Encryption key:on
ESSID:"HACK ME"
Cell 02 - Address: E0:00:00:00:00:FF
Quality=24/70 Signal level=-86 dBm
Encryption key:on
ESSID:"DoctorWOW”

4. MalBot! will then return you a list of wifi access points within the proximity. Simply
choose the ESSID you wish to attack and proceed to the next step.
5. Execute the “triangulation” script and enter in the scanning wifi NIC’s network interface
and the ESSID to be attacked.
a. If the ambient light exceeds 800 (verified by checking the character display), the
script will warn that the room is currently bright and unsafe to move in. Typing ‘n’
will exit the script and ‘y’ will continue even though it is not necessarily incognito.
b. If MalBot! is reading less than 80dBm from the victim access point, in any given

11

http://hardcodingisbetter.tumblr.com/post/52013137447/malbot-demo

current location, the script will inform the user that it is “HUNTING SIGNAL!".
MalBot! will try to move itself and triangulate the access point.

c. When MalBot! reaches 80dBm, or better, but is not in a darkly concealed area it
will try to move itself into a dark area informing the user by printing “GOOD
SIGNAL\n LOOKING FOR HIDING SPOT".

d. Only finally after both the above conditions are met will MalBot! siese from
moving and start sniffing wifi packets from the victim access point, informing the
user by printing “ATTACKING ACCESSPOINT".

$./triangulation

Enter the interface you want to use for scanning: wlan0
Enter the ESSID: HACK ME

I'THE ROOM IS BRIGHT, ARE YOU SURE?: y
HUNTING SIGNAL!

HUNTING SIGNAL!

GOOD SIGNAL

LOOKING FOR HIDING SPOT

ATTACKING ACCESSPOINT

ATTACKING ACCESSPOINT

ATTACKING ACCESSPOINT

*The source code can be found in the “SOURCE CODE” section.

Maintenance/Warnings

e Always make sure you charge the batteries with the proper charger, any misuse may
cause the battery cells to leak or explode.

e Make sure if you replace the built-in batteries that they are within the proper voltage
range.

e Any environmental factors that may cause the DC motors to become overly stress may
drain the battery at an extreme rate.
Keep MalBot! away from water
REMEMBER THAT MALBOT! SHOULD ONLY BE USED FOR EDUCATIONAL
PURPOSES. ANY ILLEGAL USE WILL NOT REFLECT ON UCSD OR ON THE DEV.

12

Parts List

Part Count Supplier Cost
Tenergy 2600mAh Portable Power Bank 1 Amazon.com $19.99
Item#51034

NTSC/PAL TFT Display 1.5” 1 Adafruit.com $39.95
RGB Backlight Negative LCD 16x2 + extras 1 Adafruit.com $13.95
Sparkfun Magician Chassis 1 Amazon.com $26.95
Adafruit Prototyping Pi Plate 1 Adafruit.com $15.95
Raspberry Pi Model B 1 Element14.com $35.00
NTE3040 Optoisolator 2 Frys.com $2.00
TIP42 PNP Transistor 2 Radioshack.com $2.00
LM7805 Linear Voltage Regulator 2 Radioshack.com $3.00
0.33microF Capacitor 2 Radioshack.com $0.20
0.1microF Capacitor 2 Radioshack.com $0.20
650hm Resistor 2 Radioshack.com $0.10
848ohm Resistor 1 Radioshack.com $0.05
9.6V 1600mAh RC Battery, Charger 1 Radioshack.com $30.00
MCP3004 A/D Converter 1 Adafruit.com $3.75
Breadboard Trim Potentiometer 10K 1 Adafruit.com $1.25
Photo cell (CdS photoresistor) 1 Adafruit.com $1.00
Total $195.34

Schematics

Voltage Regulating Circuit

TIP
42

LM7805
5.6V 3 Output+
0.33uF — 0.1uF ——
Output-
v
AGND
Motor Control Circuit
£50hm TE
3.3V 1 | 3040
2 B
3
DGND

Digital Light Sensor

3.3V RPi

MCP

3004

14

13

12

11

SCLK

10

MISC

MOSI

Cs0

DGND

14

Source Code

“findsignals”

#!/bin/bash

iwlist wlan0 scan > .signaltmp

awk '/Cell|ESSID|Quality|Encryption/' .signaltmp > signallist
rm .signaltmp

cat signallist

“triangulation”

#!/usr/bin/env python

#l018 -> 12

#l004 -> 7

import os
execfile("ECE118_PHOTO.py")
execfile("pickessid")

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(7, GPIO.OUT, GPIO.LOW)
GPIO.setup(12, GPIO.OUT, GPIO.LOW)

pickessid_init()

ok_continue = True

sig = get_signal(get_list(user_if), essid)
lum = readadc(0)

if lum > 400:
global ok_continue

while ok_continue:
sig = get_signal(get_list(user_if), essid)
lum = readadc(0)

sig_in_bounds = sig < 80
lum_in_bounds = lum < 400

if not sig_in_bounds:
print "HUNTING SIGNAL!"

displaycmd.write((HUNTING SIGNAL!")
displaycmd.close()
#DO SOME MOVEMENT
GPIO.output(7, GPIO.HIGH)
GPIO.output(12, GPIO.HIGH)

elif not lum_in_bounds:
print "GOOD SIGNAL"
print "LOOKING FOR HIDING SPOT"

displaycmd.close()
GPIO.output(7, GPIO.HIGH)
GPIO.output(12, GPIO.HIGH)
sleep(1)

#DO SOME MOVEMENT
GPIO.output(7, GPIO.LOW)
GPIO.output(12, GPIO.HIGH)

else:

ok_continue = raw_input("!!'THE ROOM IS BRIGHT, ARE YOU SURE?: ")

displaycmd = open('displaycmd.dat’, 'w')

displaycmd = open('displaycmd.dat’, 'w')
displaycmd.write('GOOD SIGNAL\nHIDING')

15

print "ATTACKING ACCESSPOINT"
displaycmd = open('displaycmd.dat', 'w')
displaycmd.write('ATTACKING\nACCESSPOINT')
displaycmd.close()
GPIO.output(7, GPIO.LOW)
GPIO.output(12, GPIO.LOW)

#CALL PACKET SNIFFING SOFTWARE

sleep(2)

“pickessid”

root@pwnpi:~/Scripts# cat pickessid
#!/usr/bin/env python

import subprocess

import re

from time import sleep

user_if ="
essid =""

def pickessid_init():
global user_if
global essid
user_if = raw_input("Enter the interface you want to use for scanning: ")
essid = raw_input("Enter the ESSID: ")

def get_list(wlan_if):
proc = subprocess.Popen('sudo iwlist '+ wlan_if + ' scan 2>/dev/null', shell=True, stdout=subprocess.PIPE,)
stdout_str = proc.communicate()[0]
stdout_list=stdout_str.split("\n")
stdout_list = stdout_list[::-1]
return stdout_list

def get_signal(iwlist_list, this_essid):
print this_essid
found = False
match =""
for line in iwlist_list:
line = line.strip()

if not found:
match = re.search(this_essid, line)
if match:
found = True
else:
match = re.search("Signal level=-(\d+)", line)
if match:
return match.group(1)
break

“robot_char”

#!/bin/sh
nohup /root/Scripts/ECE118_CHAR.py &

‘ECE118_CHAR.py”

#!/usr/bin/python

from Adafruit_CharLCD import Adafruit_CharLCD
from subprocess import *
from time import sleep, strftime

16

from datetime import datetime
execfile("/root/Scripts/ECE118_PHOTO.py")

lcd = Adafruit_CharlCD()

cmdO0 = "ip addr show eth0 | grep inet | awk {print $2}' | cut -d/ -f1"
cmd1 = "ip addr show wlan0 | grep inet | awk '{print $2}' | cut -d/ -f1"

lcd.begin(16,1)

def run_cmd(cmd):
p = Popen(cmd, shell=True, stdout=PIPE)
output = p.communicate()[0]
return output

while 1:
Icd.clear()
readinfile = open("/root/Scripts/displaycmd.dat", 'r')
displaycmd = readinfile.read()
readinfile.close()

if displaycmd == " or displaycmd == "\n":
ethOipaddr = run_cmd(cmd0)
wlanQipaddr = run_cmd(cmd1)
#lcd.message(datetime.now().strftime('%b %d %H:%M:%S"))
lcd.message('eth:%s\n' % (ethOipaddr))
Ilcd.message('win:%s\n' % (wlanQipaddr))
sleep(2)

Icd.clear()

lcd.message('luminos:%i\n' % (readadc(0)))
else:

Ilcd.message(displaycmd)
sleep(2)

Dependencies:
https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/tree/master/Adafruit CharLCD

17

https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code/tree/master/Adafruit_CharLCD

	
	
	MalBot!
	
	
	Introduction
	Table of Contents
	Goal of the Project/Notes from the Author..........................05
	The MalBot! Anatomy..06
	The Raspberry Pi Computer...08
	Battery Charging...09
	Turning MalBot! On...09
	Interfacing..10
	General Usage..10
	MalBot! Buit-in Attack...11
	Maintanence/Warnings..12
	Parts List..13
	Schematics..14
	Source Code...15
	Goal of the Project
	MalBot! Anatomy
	Overview
	
	
	
	Block Diagram
	The Raspberry Pi Computer
	
	Battery Charging
	Turning MalBot! On
	Interfacing
	General Usage
	MalBot! Built-in Attack
	Maintenance/Warnings
	
	
	
	Parts List
	
	
	Schematics
	
	Source Code

