

Hyperledger
Whitepaper

Abstract
This paper describes industry use cases that drive the principles behind a new

blockchain platform, and outlines the basic requirements and high-level architecture

based on those use cases. The design presented here describes this evolving

open-source blockchain platform, called Hyperledger, as a protocol for

business-to-business and business-to-customer transactions. Hyperledger allows for

compliance with regulations, while supporting the varied requirements that arise when

competing businesses work together on the same network. The central elements of this

specification (described below) are smart contracts, digital assets, record repositories, a

decentralized consensus-based network, and cryptographic security. Added to these

blockchain staples are industry requirements for performance, verified identities, private

and confidential transactions, and a pluggable consensus model.

Background
Blockchain is an emerging technology pattern that we believe can radically improve

banking, supply-chain, and other transaction networks, creating new opportunities for

innovation and growth while reducing the cost and risk of related business operations.

With the rapid emergence of Bitcoin in the transactions domain since 2009, many

businesses and industries have invested significant resources in investigating the

underlying technology that powers the popular, yet controversial, cryptocurrency.

Blockchain is a peer-to-peer distributed ledger technology that first gained traction in the

financial industry because of its capacity to issue, trade, manage, and service assets

efficiently and securely. The distributed ledger makes it easy to create cost-efficient

business networks without requiring a central point of control, in marked contrast to the

world of SoR (System of Records), where every member in the ecosystem needs to

maintain its own ledger system and reconcile transaction updates with one another in

inefficient, expensive, and often non-standardized inter-organizational operation

flows.As the shared ledger concept gains traction in the business world, blockchain

smart contracts are also getting a lot of attention from industry [Eth]. A smart contract

is a collection of business rules which are deployed on a blockchain, and shared and

validated collectively by a group of stakeholders. A smart contract can automate

business processes in a trusted way by allowing all stakeholders to process and

validate contractual rules as a group.

Bitcoin and other cryptocurrencies were designed to be completely open, decentralized,

and permissionless: anyone can participate without establishing an identity; one only

has to contribute by spending computation cycles. Under the Bitcoin model of

blockchain, there is no central authority that controls admission; these networks have

been called permissionless. Bitcoin is costly to operate because it requires innumerable

proof-of-work computations [N09].

Hyperledger takes a much more flexible approach to consensus than the traditional

blockchain model. We expect most--but not necessarily all--of our use cases to require

permissioned blockchains, something that cryptocurrencies do not directly support.

However, we expect that even some of the use cases of permissioned blockchains will

require different consensus algorithms. For instance, round-robin consensus may be

sufficient for certain small, highly trusted blockchains, while other blockchains may

require Paxos or PBFT variants. For this reason, Hyperledger includes support for

modular, plug-and-play consensus. This modularity gives Hyperledger the potential to

save computation cycles, scale efficiently, and respond to the multitude of enterprise

use case requirements by providing a secure, robust model for identity, auditability, and

privacy.

Why a new blockchain?

As a fledgling technology, existing blockchain implementations have fallen short of

meeting the multitude of requirements inherent in the complex world of business

transactions. Scalability challenges, and the lack of support for confidential and private

transactions, among other limitations, make its use unworkable for many

business-critical applications. In order for the platform to be resilient to time and support

requirements across the industries, it needs to be lightweight, modular and support

extensibility through configuration and pluggability of various components (transaction

validators, block consensus, etc.). To meet the varied demands of the modern

marketplace, Hyperledger has been designed for a broad array of industry-focused use

cases, thereby extending the work of the pioneers in the field by addressing the existing

shortcomings.

Our vision
In Hyperledger, we have developed a vision for the future of blockchain technology. We

believe that blockchain technology has the potential to fundamentally impact many

https://github.com/hyperledger/hyperledger/wiki/Requirements-WG
https://github.com/hyperledger/hyperledger/wiki/Requirements-WG

aspects of our online lives, from commerce to data storage and many things in between.

With this belief in mind, we think that it is important to have robust and efficient open

standards for blockchain/distributed ledger technology, so that such technology can be

brought forward to mainstream commercial adoption.

We believe that the future will involve a world with many interconnected distributed

databases and blockchains, each of which will be specialized to suit the purposes of its

users, but may also require communication with other ledgers.

Thus, we think that any open standard for blockchain technology must be as modular as

possible. It must be built so that different versions of various components of a

blockchain can be swapped in and out at the will of the developer. For instance, some

blockchain use cases will require fast consensus algorithms that require a lot of trust,

while other use cases may require less speed but also less trust. Cryptographic

algorithms, smart contracts, and database storage are other features that we believe

need to be “plug and play.”

The other important facet of modularity is that it facilitates outside development. If a

company can improve on some module of Hyperledger, it should be possible for that

company to build it and distribute as they wish. Indeed, companies or individuals

should be able to build entire collections of modules (that could be required to be used

together, or “plug and play” with other Hyperledger components) that fit in or interact

with Hyperledger. Essentially, it should be possible to build a blockchain that uses none

of the Hyperledger core components yet still resides in the Hyperledger framework.

Our long-term vision for the Hyperledger is that it contains a rich, easy-to-use API along

with numerous core modules that allow for easy development and interoperability.

While we want the core Hyperledger modules to be able to satisfy as many use cases

as possible, we understand that it will be impossible for the Hyperledger core to be able

to handle every possible industry use case. However, it should be the case that our API

is flexible enough to allow for blockchains built for these use cases outside of the

Hyperledger core to easily interact with core Hyperledger components and blockchains.

We cannot possibly imagine all of the future ways that Hyperledger, and blockchain

technology in general, will be used. Therefore, Hyperledger is designed to be both as

modular and extensible as possible in order to accommodate these future unknown

developments. In addition, the modularity of Hyperledger should enable as many

people as possible to work with Hyperledger. We hope that this modularity allows

people who invent or develop new technologies relevant to the blockchain to find it easy

and painless to incorporate them into or use them with Hyperledger.

We believe that one of the fundamental requirements for any blockchain platform is that

the identity and transactional patterns of any party on a network must be difficult for

unauthorized parties to ascertain by inspecting the ledger. We also anticipate a

requirement to allow blockchain users to make certain business logics and/or other

parameters of a transaction confidential, rendering them inaccessible to anyone other

than the stakeholders of the contract or the asset being transferred.

Hyperledger should offer support for a rich variety of applications that are easily

implemented on top of the core protocol. This will necessitate support for a wide range

of transaction semantics, cryptographic algorithms, consensus mechanisms, and

database storage protocols. As an example, we believe that, cryptographically,

Hyperledger should include all manners of encryption, signatures, and

higher-functionality crypto, from simple, fast symmetric encryption, to complicated

functional encryption and attribute-based signatures. These underlying technical

primitives should be configurable to support elements that are important to business

transactions, such as varying degrees of guaranteed transaction finality and auditability.

In summary, we want Hyperledger to be an easy-to-use, highly functional, and robust

platform that anyone who is interested in building blockchain software can use as core

code. While Hyperledger may fall short of this ideal functionality for every possible user

and every possible use case due to practical considerations, it is our goal to make

Hyperledger come as close to this ideal as possible.

Figure 1: A world of many blockchain networks

Industry use cases
We have compiled a set of initial blockchain requirements that are considered essential

for supporting the following abstract use cases. These use cases are not meant to

represent the entire set of use cases for Hyperledger, but instead compose a

representative sample that demonstrates some of the capabilities and features of

Hyperledger.

(Note: The use cases here help guide architecture and test-driven development. While

still a work in progress, the use cases should be something all contributors agree on:

both in the content and the stack-ranked prioritization of them. Propose changes if you

feel these miss the mark. It is ideal if there are no more than four abstract use cases,

and three is preferred.)

Financial Asset depository

Assets such as financial securities must be able to be dematerialized on a blockchain

network, so that all stakeholders of an asset type will have direct access to each asset,

allowing them to initiate trades and acquire information on an asset without going

through layers of intermediaries. Transactions can take place in a timeframe agreed

upon between the stakeholders, including near real time if required, and all stakeholders

must be able to access asset information in near real time. A stakeholder should be

able to add business rules for any given asset type, which further reduces operating

costs by implementing automation logic. The creator of the asset must be able to make

the asset and any rules associated with the trading of that asset private and

confidential, or public as the use case warrants. For example, the creator should be

able to create an asset such that the trade history and current balance of a holder of the

asset is not available to the other asset holders and perhaps not even available to the

creator itself.

Corporate Action

Company A announces a voluntary corporate action event. Company A needs to

ensure that complete details of the offer are sent to shareholders in real time,

regardless of how many intermediaries are involved in the process (such as

receiving/paying agents, CSD, ICSD, local/global custodian banks, asset management

firms, etc). Once a shareholder has made a decision, that decision will also be

processed and settled (including the new issuance of shares if that’s part of the

corporate action event) in real time. If required, investors’ responses can be kept

confidential such that they can make their decisions based on the merit, without fearing

coercion or retribution based on their actions.

Supply chain

The blockchain platform must provide a means to allow every participant on a supply

chain network to input and track sourcing of raw materials, record parts manufacturing

telemetry, track provenance of goods through shipping, and maintain immutable records

of all aspects of the production and storage of a finished good through to sale and

afterwards. In addition to employing both the Business contracts and Asset

depository patterns described previously, this case emphasizes the need to provide

deep searchability, backwards in time through many transaction layers. This

requirement is at the core of establishing provenance for any manufactured good that is

built from other component goods.

Master Data Management

Master data, which is usually non-transactional business information, is a key and

foundational component for many industries. Having one version of truth on this core

data, where authorized parties can submit changes and the designated validators

accept those changes, will resolve many of data quality and integrity issues.

Sharing Economy and Internet of Things

The Sharing Economy will generate new types of revenues in many industries, including

smart cities, connected homes, automotive, transportation, healthcare, retailing,

construction, education, and fitness.

While transacting, however, individuals, organizations and regulators will not always

trust each other. Properly implemented, distributed blockchain ledger technology will

help resolve many of the trust issues that exist between various parties.

Many transactions should be settled, and status of assets should be accessible in near

real time. Flexible deployment models, pluggable consensus, private transactions and

confidential contracts will be important for many deployments of Hyperledger.

For more details about use cases and their requirements, and to visualize how these

use cases can be plugged into a blockchain-based system, please click here.

Featured requirements

We next describe some of the featured requirements of Hyperledger. While these

requirements allow for many of the proposed use cases and business applications of

Hyperledger, we expect that Hyperledger will evolve to have many more features than

what we describe here.

The first, and perhaps most important, requirement of Hyperledger is modular structure.

As we have repeatedly stated, different applications will require potentially very different

cryptographic algorithms, consensus algorithms, and database storage. However, with

this in mind, we detail some more specific requirements that will be useful for many

common applications.

Private Transactions and Confidential Contracts

https://github.com/hyperledger/hyperledger/wiki
https://github.com/openblockchain/obc-docs/blob/master/biz/usecases.md

Hyperledger should eventually support a wide variety of cryptographic tools and

approaches to ensure that desired choices of confidentiality and privacy are available.

Various tools for selectively revealing information should be available for identities,

properties of transaction, smart contract state, and so on. These tools should not

compromise privacy properties.

Some uses cases (such as IoT) would require basic confidentiality functionality that is

optimized for performance which might not be appropriate for some financial use case.

The crypto and consensus algorithm should handle both basic confidentiality

functionality optimized for performance, as well as sophisticated algorithms for complex,

bespoke cryptographical requirements.

Identity and Auditability

In addition to the existence of private transactions and confidential transactions, the

well-vetted concepts of identity and auditability based on a mature public key

infrastructure (PKI), completes cryptographic algorithms and allows fully-realized

confidentiality on Hyperledger.

Besides the pure existence of a PKI providing current access and identity to users and

relevant entities on the respective blockchain, Hyperledger is also required to provide

the possibility to support a comprehensible, immutable documentation/historization of

these identities - including all requirements on confidentiality around them. This is

necessary in order to be able to implement any use case around change of ownership,

audit trails on document changes, etc.

In addition to positive identity, it is also important that Hyperledger offer users the ability

to mask their identity in certain situations, and to only prove it when necessary (if ever).

This, of course, goes well beyond the notion of traditional identity.

Furthermore, this flexible PKI allows users to adjust the strength of the cryptographic

measures for their specific bespoke requirements.

Interoperability

In the loosely coupled world of many networks, separate networks don't need to know

the details of how they each work. These separate networks, however, do need to have

enough common ground to reliably exchange messages without error or

misunderstanding. Especially with the expected future widespread use of blockchain

technology, the parallel existence of a variety of blockchains needs to be taken into

account. It is very likely that many use cases will span across several blockchains.

The differences in implementation of various blockchain networks, and their evolving

and dynamic nature may result in a variety of highly specialized implementations.

Standardized specification for inter-ledger communication will go a long way towards

creating this as a common language across many networks.

Interoperability thus truly occurs when services can interact with each other despite the

likely differences in design and implementation of blockchain technology. It is defined by

the ability of two or more systems, or components, to exchange information, and to use

the information that has been exchanged. In order to allow for envisioned broad

usability of Hyperledger across industries and use cases a functionality/ protocol

allowing for interoperability between two or more blockchains is available.

Portability

The Hyperledger Project achieves portability by abstracting the value-added systems

from the interfaces of its core components. For instance, smart contracts could be

moved from one deployment to another without having to make any other changes.

Portability of the value-added systems, such as API libraries and GUIs for developing

applications, extensions, will ultimately ensure application of such value-added systems

across the many versions, implementations and deployments of the Hyperledger

Project.

Portability on the infrastructure level will ultimately ensure that the Hyperledger Project

functions in the same way across many heterogeneous computing platforms and

network environments, which is essential to running large blockchain networks in

practice.

Architecture
Figure 2 below shows the Hyperledger reference architecture aligned in four categories:

Identity services, Policy services, Blockchain and Smart-contracts. These categories are

a logical structure, not a physical depiction of partitioning of components into separate

processes, address spaces or (virtual) machines.

Figure 2: Hyperledger reference architecture

Identity services manages identities of entities, participants and ledger objects such as

assets and smart-contracts.

Policy services manages access control, privacy, consortium rules, consensus rules,

etc.

Blockchain services manage the distributed ledger through a peer-to-peer

communication protocol. The data structures are optimized to provide efficient schemes

for maintaining the world state replicated at many participants. Different consensus

algorithms guaranteeing strong consistency (tolerating misbehavior with BFT, tolerating

delays and outages with crash-tolerance, or tolerating censorship with proof-of-work)

may be plugged in and configured per deployment.

Smart-contract services are a secured and lightweight way to sandbox the

smart-contract execution on validating nodes. The environment is a "locked down" and

secured container with a set of signed base images.

Identity Services

Identity is a pervasive requirement for the Hyperledger

protocol. Identity services manage identities for

participating organizations, validators, and transactors;

objects contained in the ledger like assets and smart

contracts; and the system components like networks,

servers, and execution environments. Identity services

includes a representation of the various roles that objects

play in the ledger.

Policy Services

The policy services function enables the configuration and

management of system policies. This includes access

control and authorization permissions, consortium policies

which codify the agreed upon bylaws and rules for

on-boarding and off-boarding of members, identity

registration and verification policies, privacy, confidentiality

and accountability policies, and consensus policies.

BLOCKCHAIN

Blockchain services consists of three

key components: Peer-to-Peer (P2P)

Protocol, Distributed Ledger and

Consensus Manager.

P2P Protocol provides many

capabilities including bidirectional

streaming, flow control, and multiplexing

requests over a single connection. Most

importantly, it works with existing

Internet infrastructure, including

firewalls, proxies and security. This

component defines messages used by

peer nodes, from point-to-point to

multicast.

Distributed Ledger manages the

blockchain and the world state by

processing and validating transactions,

updating and maintaining the state of

ledger objects. Distributed Ledger also

provides some essential, non-functional

aspects such as:

●​ Efficiently calculate a
cryptographic hash of the entire
dataset after each block.

●​ Efficiently transmit a minimal
"delta" of changes to the dataset,

when a peer is out of sync and
needs to "catch up."

●​ Minimize the amount of stored
data that is required for each
peer to operate.

Distributed Ledger uses a data store to persist the dataset, and builds an internal data

structure to represent the state that satisfies the three attributes. Large files

(documents, etc.) are stored in off-chain storage, not on the ledger. Their hashes can be

stored on-chain as part of the transactions, which is required to maintain the integrity of

files.

Consensus Module is responsible for confirming the correctness of all transactions in a

proposed block, according to validation and consensus policies. The consensus

function achieves agreement (among nodes on the network,) on the order and

correctness of transactions in a block. This function interfaces to and depends on the

smart-contract module to verify correctness of transactions.

By supporting a modular pluggable consensus function, Hyperledger supports the

configuration of different types of consensus modules designed for specific

threat/security models.

Smart-Contract

As defined in the previous sections, a smart-contract is a

decentralized transactional program, running on the

validating nodes.

Smart contract services includes a secure runtime

environment, smart-contract registry and life-cycle

management.

The Hyperledger platform provides the ability to specify

smart contracts in a language agnostic manner. The

inter-operability of the smart contracts on a given network,

independent of the language, provides a truly extensible

platform.

Application programming
interface

An easy-to-use, flexible API is one of the cornerstones of Hyperledger. Each module

type of Hyperledger has a clear, well-defined API so that Hyperledger algorithms can be

used in a manner that is as “plug-and-play” as possible. For instance, there is a

consensus algorithm API that ensures that people can painlessly swap consensus

algorithms without impacting other parts of the code. Well-defined APIs are essential in

order for Hyperledger to support the many use cases that people have developed.

In addition, the external APIs--those that are not designed for module-to-module

communication--are designed to be extremely usable, so that a relatively unskilled

developer can write code on top of Hyperledger without too much trouble. A totally

separate API, smart contract model, and consensus, will lay the foundation upon which

ecosystem participants could lay their contributions. This will ultimately allow rapid

growth of the ecosystem.

Network Topology
The network topology of Hyperledger can, in principle, be quite varied: in particular,

participants can use cloud services to host all kinds of peer nodes, including validating

nodes, or they can run such nodes themselves. It is important to note, though, that

Hyperledger runs in an agnostic manner to the underlying network structure, so who is

actually running the hardware behind nodes matters little. However, if a cloud is hosting

nodes, care must be taken to avoid a potentially malicious cloud server compromising

secret information, so more powerful cryptographic solutions may need to be used in

this case.

Some Hyperledger deployments will experience a great degree of variability when it

comes to latency of communication between nodes in the network. Network failures,

node failure, overall network resiliency and recoverability should be factored into the

requirements when planning deployments.

Conclusion
Hyperledger’s mission is to enable mainstream industry adoption of blockchain

technology. After reviewing the available blockchain solutions and hearing use cases

from both industry leaders and technology evangelists, we are convinced that

blockchain will be an extremely important technology pattern that could revolutionize

many industries and businesses.

We have observed that industry is urgently calling for a business-ready blockchain

platform that is both efficient and scalable, and offers enterprise-grade support for

privacy and confidentiality. We have also discovered many different categories of use

cases, each of which may require a different underlying blockchain implementation.

To fully realize the potential of blockchain technology and to create a standard that can

be adopted into many different uses, we designed the Hyperledger platform to be both

flexible and extensible.

Glossary

Roles & Participants

Roles

Chain Transactor Entities that have permission to create transactions and query

network data.

Chain Validator Entities that own a stake of a chain network. Each chain

validator has a voice in deciding whether a transaction is valid,

therefore chain validators can interrogate all transactions sent

to their chain.

Types of Network

Permissioned vs. Non-permissioned

Permissioned

Network

A blockchain network collectively owned and operated

by a group of identifiable and verifiable business entities.

Non-permission

ed Network

A blockchain network with no identifiable ownership

structure and is operated by a community of participants

that may or may not be identifiable.

Types of Chains

Standard Chain A blockchain network with many participants; each chain

operates one or multiple applications/solutions validated by a

group of organizations/business entities.

Confidential

Chain

A special purpose chain created to run confidential business

logic that is only accessible by contract stakeholders.

Transactions

Types of Transactions

Deployment

Transaction

Transactions that deploy a new smart contract to a chain.

Invocation

Transaction

Transactions that invoke a function on a smart contract.

Confidentiality of Transactions

Public

Transaction

A transaction with its payload in the open. Anyone with access

to a chain network can interrogate the details of public

transactions.

Confidential

Transaction

A transaction with its payload cryptographically hidden such

that no one besides the stakeholders of a transaction can

interrogate its content.

Confidential

contract

Transaction

A transaction with its payload encrypted such that only

validators can decrypt them. Smart contract confidentiality is

determined during deploy time. If a smart contract is deployed

as a confidential smart contract, then the payload of all

subsequent invocation transactions to that smart contract will

be encrypted.

Inter-chain Transactions

Inter-Network

Transaction

Transactions between two business networks (standard

chains).

Inter-Chain

Transaction

Transactions between confidential chains and main chains.

Smart contracts in a confidential chain can trigger transactions

on one or multiple chain(s).

Hyperledger Entities

Smart Contract

Public Smart

contract

Smart contracts deployed by public transactions, these smart

contracts can be invoked by any member of the network.

Confidential

Smart contract

Smart contracts deployed by confidential transactions, these

smart contracts can only be invoked by validating members

(Chain validators) of the network.

Access

Controlled Smart

contract

Smart contracts deployed by confidential transactions that also

embed the tokens of approved invokers. These invokers are

also allowed to invoke confidential smart contracts even though

they are not validators.

Ledger

Smart

contract-State

HPL provides state support; Smart contracts access internal

state storage through state APIs. States are created and

updated by transactions calling smart contract functions with

state accessing logic.

Transaction List All processed transactions are kept in the ledger in their

original form (with payload encrypted for confidential

transactions), so that network participants can interrogate past

transactions to which they have access permissions.

Ledger Hash A hash that captures the present snapshot of the ledger. It is a

product of all validated transactions processed by the network

since the genesis transaction.

Node

DevOps Service The frontal module on a node that provides APIs for clients to

interact with their node and chain network. This module is also

responsible to construct transactions, and work with the

membership service component to receive and store all types

of certificates and encryption keys in its storage.

Node Service The main module on a node that is responsible to process

transactions, deploy and execute smart contracts, maintain

ledger data, and trigger the consensus process.

Consensus The default consensus algorithm of Hyperledger fabric is called

Sieve. It is a new algorithm, enhancing the “classic” PBFT

mechanism in that it allows validating nodes to do a best effort

in identifying non-deterministic transactions.

References
●​ [CL02] Miguel Castro and Barbara Liskov, Practical Byzantine Fault Tolerance

●​ [N09] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System

●​ [Eth] Ethereum Whitepaper

http://dl.acm.org/citation.cfm?id=296824
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper

	Hyperledger Whitepaper
	Abstract
	Background
	Our vision
	In summary, we want Hyperledger to be an easy-to-use, highly functional, and robust platform that anyone who is interested in building blockchain software can use as core code. While Hyperledger may fall short of this ideal functionality for every possible user and every possible use case due to practical considerations, it is our goal to make Hyperledger come as close to this ideal as possible.
	Industry use cases
	Financial Asset depository
	Corporate Action
	Supply chain
	Master Data Management
	Sharing Economy and Internet of Things

	Featured requirements
	Architecture
	Identity Services
	Policy Services
	BLOCKCHAIN
	
	Smart-Contract

	Application programming interface
	Network Topology
	Conclusion
	References
	

