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Exam 3 Review
Chapters 6, 7, 8, 9 and 10

Determine whether each proposition is true or false, and then prove or disprove it. Clearly indicate the
method of proof.

1. Proposition. Given an integer a, then a is even if and only if is even.𝑎3 + 3𝑎2 + 5𝑎

2. Proposition. For every integer n, either or .4|𝑛2 4|(𝑛2 − 1)
3. Proposition. The number is irrational.15
4. Proposition. The set has cardinality greater𝐴 = {𝑎 ∈ ℕ: 𝑎 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 ∧ 𝑎 ≥ 100 ∧ 𝑎 ≤ 110}

than 2.
5. Proposition. If A, B, and C are sets, then .(𝐴 ∪ 𝐵) − 𝐶 = (𝐴 − 𝐶) ∪ (𝐵 − 𝐶)
6. Proposition. If A and B are sets, then .(𝐴 − 𝐵) × 𝐵 = (𝐴 × 𝐵) − (𝐵 × 𝐵)
7. Proposition. If a irrational and ab is rational then b is irrational.
8. Proposition. If A, B, and C are sets, then .(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)
9. Proposition. If A and B are sets, then .𝑃(𝐴) − 𝑃(𝐵) ⊆ 𝑃(𝐴 − 𝐵)

10. Proposition. If and then .𝑥, 𝑦 ∈ ℝ 𝑥2 < 𝑦2 𝑥 < 𝑦
11. Proposition. , .∀𝑛 ∈ ℕ 1 · 3 + 2 · 4 + 3 · 5 +... + 𝑛 · (𝑛 + 2) = 𝑛(𝑛+1)(2𝑛+7)

6

12. Proposition. For any integer , it follows that .𝑛 ≥ 0 9|(43𝑛 + 8)
13. Proposition. Concerning the Fibonacci sequence, prove that for every n in the natural numbers,

.𝐹
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= 𝐹
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Exam 3 Review ANSWER KEY

If you discover an error please let me know, either in class, on the OpenLab, or by email to
jreitz@citytech.cuny.edu. Corrections will be posted on the “Exam Reviews” page.

NOTE 1: For problems requiring you to prove something, there is usually more than one correct answer,
and it is often possible to use more than one different type of proof (direct, contrapositive, or
contradiction) correctly. The following are examples of correct solutions, yours may be different.
NOTE 2: As we have been working with proofs for several weeks, there are a few facts that we have used
many times - for example the definitions of even and odd number - and which have become familiar and
second-nature. You will notice that I will start moving away from stating explicitly when I employ these
definitions, leaving it up to you to (mentally) fill in the justification when I say something like “n is even,
so for some integer a”.𝑛 = 2𝑎

1. Proposition. Given an integer a, then a is even if and only if is even.𝑎3 + 3𝑎2 + 5𝑎
TRUE.
Proof. (Forward direction , direct proof). Suppose a is even. Then for some integer b.⇒ 𝑎 = 2𝑏

So , which is even.𝑎3 + 3𝑎2 + 5𝑎 = (2𝑏)2 + 3(2𝑏)2 + 5(2𝑏) = 2(4𝑏3 + 6𝑏2 + 5𝑏)
(Backward direction , contrapositive proof). Suppose a is not even. Then a is odd, so⇐

for some integer b. So𝑎 = 2𝑏 + 1

𝑎3 + 3𝑎2 + 5𝑎 = (2𝑏 + 1)3 + 3(2𝑏 + 1)2 + 5(2𝑏 + 1) = 2(4𝑏3 + 12𝑏2 + 14𝑏 + 4) + 1
, which is odd.☐

2. Proposition. For every integer n, either or .4|𝑛2 4|(𝑛2 − 1)
TRUE.
Proof. (Direct proof). Suppose n is an integer. Then n is either even or odd.

Case 1. Suppose n is even. Then for some integer a, and so . Thus𝑛 = 2𝑎 𝑛2 = (2𝑎)2 = 4𝑎2

.4|𝑛2

Case 2. Suppose n is odd. Then for an integer a, and𝑛 = 2𝑎 + 1

. Subtracting one from both sides, we see that𝑛2 = (2𝑎 + 1)2 = 4𝑎2 + 4𝑎 + 1

, and so . This completes the proof.☐𝑛2 − 1 = 4(𝑎2 + 𝑎) 4|(𝑛2 − 1)
3. Proposition. The number is irrational.15

TRUE.
Proof. (Proof by contradiction). Suppose that is rational. Then for some integers15 15 = 𝑎

𝑏

a and b with no common factors. It follows that and so and .15 = 𝑏2

𝑎2 15𝑎2 = 𝑏2 3(5𝑎2) = 𝑏2

Thus 3 divides , and by Euclid’s Lemma it follows that 3 divides b, giving for some𝑏2 𝑏 = 3𝑘

integer k. Substituting, we have , and dividing by 3 we get . We15𝑎2 = (3𝑘)2 = 9𝑘2 5𝑎2 = 3𝑘2

have shown that 3 divides and, applying Euclid’s Lemma twice, we see that 3 divides a. This5𝑎2
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contradicts the assumption that a and b have no common factors.☐
4. The set has cardinality greater than 2.𝐴 = {𝑎 ∈ ℕ: 𝑎 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒 ∧ 𝑎 ≥ 100 ∧ 𝑎 ≤ 110}

TRUE.
Proof. (Proof by example!) The numbers 101, 103, 107 and 109 are all primes between 100 and
110. Thus they are all members of A, and so A has cardinality greater than 2.☐

5. Proposition. If A, B, and C are sets, then .(𝐴 ∪ 𝐵) − 𝐶 = (𝐴 − 𝐶) ∪ (𝐵 − 𝐶)
TRUE.
Proof. (Forward direction, , direct proof). Suppose . Then is a member of⊆ 𝑎 ∈ (𝐴 ∪ 𝐵) − 𝐶 𝑎
A or B, but . If then , and if then . In either𝑎 ∉ 𝐶 𝑎 ∈ 𝐴 𝑎 ∈ (𝐴 − 𝐶) 𝑎 ∈ 𝐵 𝑎 ∈ (𝐵 − 𝐶)
case, we have . Therefore𝑎 ∈ (𝐴 − 𝐶) ∪ (𝐵 − 𝐶) (𝐴 ∪ 𝐵) − 𝐶 ⊆ (𝐴 − 𝐶) ∪ (𝐵 − 𝐶)
(Backward direction, , direct proof). Conversely, suppose . Then a⊇ 𝑎 ∈ (𝐴 − 𝐶) ∪ (𝐵 − 𝐶)
is either in or in . If then and , and if(𝐴 − 𝐶) (𝐵 − 𝐶) 𝑎 ∈ (𝐴 − 𝐶) 𝑎 ∈ 𝐴 𝑎 ∉ 𝐶

then and . In either case, , and so we have shown that is a𝑎 ∈ (𝐵 − 𝐶) 𝑎 ∈ 𝐵 𝑎 ∉ 𝐶 𝑎 ∉ 𝐶 𝑎
member of either A or B, but . Thus , and so𝑎 ∉ 𝐶 𝑎 ∈ (𝐴 ∪ 𝐵) − 𝐶

.(𝐴 ∪ 𝐵) − 𝐶 ⊇ (𝐴 − 𝐶) ∪ (𝐵 − 𝐶)
Therefore .☐(𝐴 ∪ 𝐵) − 𝐶 = (𝐴 − 𝐶) ∪ (𝐵 − 𝐶)

6. Proposition. If A and B are sets, then .(𝐴 − 𝐵) × 𝐵 = (𝐴 × 𝐵) − (𝐵 × 𝐵)
TRUE.
Proof. (Forward direction, , direct proof). Suppose . Then⊆ (𝑎, 𝑏) ∈ (𝐴 − 𝐵) × 𝐵

and . Since and , we have , and since𝑎 ∈ 𝐴,  𝑎 ∉ 𝐵 𝑏 ∈ 𝐵 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 (𝑎, 𝑏) ∈ (𝐴 × 𝐵)
we have . Thus , and so𝑎 ∉ 𝐵 (𝑎, 𝑏) ∉ (𝐵 × 𝐵) (𝑎, 𝑏) ∈ (𝐴 × 𝐵) − (𝐵 × 𝐵)

(𝐴 − 𝐵) × 𝐵 ⊆ (𝐴 × 𝐵) − (𝐵 × 𝐵)
(Backward direction, , direct proof). Conversely, suppose .⊇ (𝑎, 𝑏) ∈ (𝐴 × 𝐵) − (𝐵 × 𝐵)
From we conclude that and . Since we must(𝑎, 𝑏) ∈ (𝐴 × 𝐵) 𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 (𝑎, 𝑏) ∉ (𝐵 × 𝐵)
have either or , and since we have shown that it follows that . Thus𝑎 ∉ 𝐵 𝑏 ∉ 𝐵 𝑏 ∈ 𝐵 𝑎 ∉ 𝐵

, and so . This shows that𝑎 ∈ (𝐴 − 𝐵) (𝑎, 𝑏) ∈ (𝐴 − 𝐵) × 𝐵
(𝐴 − 𝐵) × 𝐵 ⊇ (𝐴 × 𝐵) − (𝐵 × 𝐵)
Therefore .☐(𝐴 − 𝐵) × 𝐵 = (𝐴 × 𝐵) − (𝐵 × 𝐵)

7. Proposition. If a irrational and ab is rational then b is irrational.
TRUE.
Proof. (Proof by contradiction). Suppose that a is irrational and ab is rational, and b is rational.
Then and where (by the definition of rational), and so𝑎𝑏 = 𝑝

𝑞 𝑏 = 𝑟
𝑠 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ

. Thus , so solving for a give . Since ps and qr are𝑝
𝑞 = 𝑎𝑏 = 𝑎 · 𝑟

𝑠
𝑝
𝑞 = 𝑎 · 𝑟

𝑠 𝑎 = 𝑝𝑠
𝑞𝑟

integers, it follows that a is rational, which contradicts our assumption that a is irrational.☐
8. Proposition. If A, B, and C are sets, then .(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)

TRUE.
Proof. (Forward direction, , direct proof). Suppose , so either or⊆ 𝑎 ∈ (𝐴 ∩ 𝐵) ∪ 𝐶 𝑎 ∈ 𝐴 ∩ 𝐵

.𝑎 ∈ 𝐶
Case 1. If then and , and it follows that and𝑎 ∈ 𝐴 ∩ 𝐵 𝑎 ∈ 𝐴 𝑎 ∈ 𝐵 𝑎 ∈ (𝐴 ∪ 𝐶) 𝑎 ∈ (𝐵 ∪ 𝐶)
, so we have .𝑎 ∈ (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)
Case 2. If , then and , so we have .𝑎 ∈ 𝐶 𝑎 ∈ (𝐴 ∪ 𝐶) 𝑎 ∈ (𝐵 ∪ 𝐶) 𝑎 ∈ (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)
Therefore .(𝐴 ∩ 𝐵) ∪ 𝐶 ⊆ (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)
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(Backward direction, , direct proof). Conversely, suppose . Then a is⊇ 𝑎 ∈ (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)
in either A or C, and in either B or C. I will consider separately the cases and .𝑎 ∈ 𝐶 𝑎 ∉ 𝐶
Case 1. If , then .𝑎 ∈ 𝐶 𝑎 ∈ (𝐴 ∩ 𝐵) ∪ 𝐶
Case 2. If , then it follow that a is in A (since it is in either A or C), and similarly it follows𝑎 ∉ 𝐶
that a is in B. Thus , and so . This shows𝑎 ∈ 𝐴 ∩ 𝐵 𝑎 ∈ (𝐴 ∩ 𝐵) ∪ 𝐶

.(𝐴 ∩ 𝐵) ∪ 𝐶 ⊇ (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)
Therefore .☐(𝐴 ∩ 𝐵) ∪ 𝐶 = (𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)

9. Proposition. If A and B are sets, then .𝑃(𝐴) − 𝑃(𝐵) ⊆ 𝑃(𝐴 − 𝐵)
FALSE.
Disproof. (Counterexample) Consider the sets and . The set is a𝐴 = {1, 2} 𝐵 = {1} {1, 2}
subset of A but not a subset of B, and so it it in . However, it is not a subset of𝑃(𝐴) − 𝑃(𝐵)

, and so it is not in .☐𝐴 − 𝐵 = {2} 𝑃(𝐴 − 𝐵)

10. Proposition. If and then .𝑥, 𝑦 ∈ ℝ 𝑥2 < 𝑦2 𝑥 < 𝑦
FALSE.

Disproof. (Counterexample) Suppose and . Then since , but𝑥 = 1 𝑦 =− 2 𝑥2 < 𝑦2 1 < 4
.☐𝑥 > 𝑦

11. Proposition. , .∀𝑛 ∈ ℕ 1 · 3 + 2 · 4 + 3 · 5 +... + 𝑛 · (𝑛 + 2) = 𝑛(𝑛+1)(2𝑛+7)
6

TRUE
Proof. (Proof by induction)
Base step. If then we have , or , which is true.𝑛 = 1 1 · 3 = 1(1+2)(2·1+7)

6 3 = 18
6

Inductive step. For a natural number k, we assume
. Adding to both1 · 3 + 2 · 4 + 3 · 5 +... + 𝑘 · (𝑘 + 2) = 𝑘(𝑘+1)(2𝑘+7)

6 (𝑘 + 1)(𝑘 + 3)

sides, we obtain:
1 · 3 + 2 · 4 + 3 · 5 +... + 𝑘 · (𝑘 + 2) + (𝑘 + 1)(𝑘 + 3) = 𝑘(𝑘+1)(2𝑘+7)

6 + (𝑘 + 1)(𝑘 + 3)

. Note that the left hand matches the left hand side of the case, so we will focus on𝑛 = 𝑘 + 1
the right hand side.
𝑘(𝑘+1)(2𝑘+7)

6 + (𝑘 + 1)(𝑘 + 3) = 2𝑘3+9𝑘2+7𝑘
6 + 6(𝑘2+4𝑘+3)

6

= 2𝑘3+15𝑘2+31𝑘+18
6

= (𝑘+1)(𝑘+2)(2(𝑘+1)+7)
6

Thus .1 · 3 + 2 · 4 + 3 · 5 +... + 𝑘 · (𝑘 + 2) + (𝑘 + 1)(𝑘 + 3) = (𝑘+1)(𝑘+2)(2(𝑘+1)+7)
6

Therefore by induction we have shown ,∀𝑛 ∈ ℕ
.1 · 3 + 2 · 4 + 3 · 5 +... + 𝑛 · (𝑛 + 2) = 𝑛(𝑛+1)(2𝑛+7)

6

12. Proposition. For any integer , it follows that .𝑛 ≥ 0 9|(43𝑛 + 8)
TRUE
Proof. (Proof by induction)

Base step. If , then , and we have .𝑛 = 0 43·0 + 8 = 9 9|9

Inductive step. Assume . Then for some integer a. Multiplying both9|43𝑘 + 8 43𝑘 + 8 = 9𝑎
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sides by , we have:43 = 64

43 · 43𝑘 + 64 · 8 = 64 · 9𝑎

43𝑘+3 + 512 = 576𝑎
Subtracting 504 from both sides, we obtain

43(𝑘+1) + 8 = 576𝑎 − 504

43(𝑘+1) + 8 = 9(64𝑎 − 56)

and so .9|43(𝑘+1) + 8

Thus by induction we have , .☐∀𝑛 ∈ ℕ 9|(43𝑛 + 8)
13. Proposition. Concerning the Fibonacci sequence, prove that for every n in the natural numbers,

.𝐹
1

+ 𝐹
3

+ 𝐹
5

+... + 𝐹
2𝑛−1

= 𝐹
2𝑛

TRUE
Proof. (Proof by induction).
Base step. , or 1=1.𝐹

1
= 𝐹

2

Inductive step. Suppose . Adding to both sides, we have𝐹
1

+ 𝐹
3

+ 𝐹
5

+... + 𝐹
2𝑘−1

= 𝐹
2𝑘

𝐹
2𝑘+1

𝐹
1

+ 𝐹
3

+ 𝐹
5

+... + 𝐹
2𝑘−1

+ 𝐹
2𝑘+1

= 𝐹
2𝑘

+ 𝐹
2𝑘+1

From the definition of the Fibonacci sequence, we have , so𝐹
2𝑘

+ 𝐹
2𝑘+1

= 𝐹
2𝑘+2

𝐹
1

+ 𝐹
3

+ 𝐹
5

+... + 𝐹
2𝑘−1

+ 𝐹
2𝑘+1

= 𝐹
2𝑘+2

Carefully rewriting subscripts on both sides we obtain
.𝐹

1
+ 𝐹

3
+ 𝐹

5
+... + 𝐹

2𝑘−1
+ 𝐹

2(𝑘+1)−1
= 𝐹

2(𝑘+1)

Thus by induction we have shown that for every n in the natural numbers,
.☐𝐹

1
+ 𝐹

3
+ 𝐹

5
+... + 𝐹

2𝑛−1
= 𝐹

2𝑛


