
What is a pointer?
Pointers are among the most consistently confusing topics for new programmers. Even
so, they don’t have to be! Once you get some practice you’ll see just how uncomplicated
they really are and can work on implementing them into your own programs.

Pointers: are objects whose values are the addresses of
another object in memory.

How are they used?
Pointers can be created using the following syntax:

●​ (Type) (Star) (Variable Name) = &(Thing Pointing To)
●​ int* ptr = &x;

●​ int *p = &y;

​ The “address-of” operator, ‘&,’ gets the address of the variable.
Note that the star can be anywhere between the type and variable name.

int main()​
{​
 short s = 7;​
 int i = 3;​
 int* ptr = &i;​ // '*' here declares ptr as a pointer to int i​
 short z = 7;​
 short *seven = &s; // '&' gets the address of s​
}

0x112 0x116 0x120 0x124 0x128

short s = 7 int i = 3 int* ptr = 0x116 short z = 7 short* seven = 0x112

*This worksheet uses a simplified representation of memory storage for the sake of learning pointers only

Try it out: Pointer Declaration & Use
Declare and initialize an object, num, of type double and a pointer, ptr, to
it. Try to use the pointer to:

●​ Print out the memory address of your double
●​ Print out the value of your double
●​ Modify the value of your double

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

The NULLPTR
The nullptr is a special pointer that does NOT point to an object.
Declaration of a pointer type but failure to initialize it gives the pointer a
garbage value and dereferencing that pointer leads to undefined behavior.

int* ptr = nullptr;

When we declare a pointer as nullptr, we can make a check that our value has
not been declared as something else. The nullptr may be used to signify the
end of something like a list; while traversing down the list, by doing a check for

ptr->next == nullptr

we can ensure that we know when we’ve reached the end, assuming we’ve
already set the last value in a list to refer to the nullptr if the next value is
accessed.

Example:

struct Node​
{​
​ int val;​
​ Node* next; // points to the next node in the list​
}​
​
int main()​
{​
​ Node one, two, three;​
​ one.val = 1;​
​ one.next = &two;​
​ two.val = 2;​
​ two.next = nullptr;​
​
​ Node* ptr = &one;​
​ while (ptr->next != nullptr)

{

​ ​ cout << ptr->val << " ";

ptr = ptr->next;

}

return 0;

}

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

Pointers & Arrays
Arrays and pointers may be similar, but they are NOT the same. However,
what does an array parameter refer to? When the name of an array is used
in expressions, it is automatically converted to a pointer to the first element
of the array. This means that there is a nearly seamless system of use
between arrays and pointers, but remember that arrays are NOT pointers!

int main()

{

int arr[] = {4, 3, 2};​
int* ptr1 = arr;​
int *ptr2 = ptr1 + 1;​
​
ptr1 = 5; // '' here gets the value of (dereferences) arr[0]​
*(ptr2+1) = 6;

}

0x123 0x127 0x131 0x135 0x139 0x143

ptr1 = 0x131 -193256328 arr[0] = 5 arr[1] = 3 arr[2] = 6 ptr2 = 0x135

Pointers to Arrays
Pointers can also be pointed to arrays and used similarly:

int arr[5] = {6, 7, 8, 9, 10};​
int* ptr = arr;

​
cout << *(ptr + 2) << endl;​ // both print the value '8'
cout << ptr[2] << endl;

Try it out: Pointers & Arrays
Practice these to solidify your pointer-array skills:

●​ Pass an integer array and its size to a void function foo and use a
pointer to access every element of the array.

●​ Try using various pointer operations (*, +, ++, --, +=, etc) with an
array variable. What works? What doesn’t?

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

Pointers & Const
Many times, we will have to pass pointers to functions with restrictions.
Just as we can define const variable types, we can do the same with
pointers! However, as a pointer consists of two things (the pointer itself
and what is being pointed to), there is some special syntax.

Const Possibilities:

●​ (Type) (Star) (Variable Name)
○​ No restriction on modification

●​ Const (Type) (Star) (Variable Name)
○​ Pointer to type const: Can’t modify value of thing pointed to

●​ (Type) (Star) Const (Variable Name)
○​ Pointer is const: Can’t change what object is pointed to

●​ Const (Type) (Star) Const (Variable Name):
○​ Can’t modify pointer or value of thing pointed to

void noRestriction(int* p) // both p and what p points to can be​
{ ... } // modified​
​
void xConst(const int* p) // points to const int, can't modify x​
{ ... }​
​
void ptrConst(int* const p) // pointer is const, can't make p point​
{ ... } // to something else ​
 // ("const" must come after '*')

​
void bothConst(const int* const p) // can't modify p or what p points​
{ ... } // to​
​
int main()​
{

int x;​
int* ptr = &x;

​
noRestriction(ptr);​
xConst(ptr);​
ptrConst(ptr);​
bothConst(ptr);

}

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

Pointers to Pointers
Eventually, we must deal with situations involving pointers to pointers.
This can get a little confusing, so it’s best to practice as much as possible!
Even so, the syntax is the same as everything we’ve done so far:

●​ (Type) (Star) (Star) (Variable Name)
●​ (int*)* ptrsquared;

●​ double** doubledouble;

Try it out: Pointers to Pointers
What would the following program print to standard output?

int main()​
{​
​ int a;​
​ int* b = &a;​
​ // int** c = &a; would fail to compile​
​ int** c = &b;​
​ int d = 100;​
​
​ *b = 5;

**c = 10;​
​
cout << *b << endl;​
cout << *c << endl;​
​
b = &d;​
(*b)++;​
​
cout << **c << endl;

}

●​ Necessary Information:
○​ &a = 0x10, &d = 0x20

○​ &b = 0x100

○​ &c = 0x1000

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

Solutions
Pointer Declaration & Use

Declare and initialize an object, num, of type double and a pointer, ptr, to
it.

double num = 3.14;

double* ptr = #

Try to use the pointer to:

●​ Print out the memory address of your double
○​ cout << ptr;

●​ Print out the value of your double
○​ cout << *ptr;

●​ Modify the value of your double
○​ *ptr = 3.1415926;

Pointers & Arrays
Pass an integer array and its size to a void function foo and use a pointer
to access every element of the array.

void foo(int arr[], int size)
{

int* ptr = arr;
for(int i = 0; i < size; i++)

​ ​ cout << arr[i] << “ “;

​ return;
}

int main()
{
​ int a[5] = {1, 2, 3, 4, 5};
​ foo (a, 5);

​ return 0;
}

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

Pointers to Pointers
What would the following program print to standard output?

int main()​
{​
​ int a;​
​ int* b = &a;​
​ /* int** c = &a; would fail to compile */​
​ int** c = &b;​
​ int d = 100;​
​
​ *b = 5;

**c = 10;​
​
cout << *b << endl;​
cout << *c << endl;​
​
b = &d;​
(*b)++;​
​
cout << **c << endl;

}

●​ Necessary Information:
○​ &a = 0x10, &d = 0x20

○​ &b = 0x100

○​ &c = 0x1000

10

0x100

101

Worksheet by Dylan Gunn, UCLA 2020
Feedback Welcome: dylankgunn@gmail.com

	What is a pointer?
	How are they used?
	Try it out: Pointer Declaration & Use
	The NULLPTR
	The nullptr is a special pointer that does NOT point to an object. Declaration of a pointer type but failure to initialize it gives the pointer a garbage value and dereferencing that pointer leads to undefined behavior.
	Pointers & Arrays
	Pointers to Arrays
	Try it out: Pointers & Arrays
	Try it out: Pointers to Pointers

