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Big O Notation 

 

What we're going to focus on is that idea of 
counting operations, but we're not going to 
worry about small variations, whether it's three 
or four steps inside of the loop. We're going to 
show that that doesn't matter. 
  
We’re focused on what happens when the size 
of the problem gets arbitrarily large. We don’t 
care about counting things from 0 up to x when 
x is 10 or 20. Instead, what happens when it’s a 
million or a billion? 
  
And we want to relate that time needed against 
the size of the input, so we can make that 
comparison. 
 
So to do that, we have to do a couple of things. 
 
We have to decide what we’re going to measure, 
and then we have to think how we count without 
worrying about implementation details.  

 

 

Focusing on the order of growth! 
This means you're focusing on the dominant 
term when analyzing the time complexity of an 
algorithm. 
 
Big O Notation: 

●​ Big O notation describes the upper 
bound of an algorithm's runtime as the 
input size grows.  



●​ It helps us understand how the algorithm 
scales.   

●​ We care about the long-term trends. 
●​ Simplify for analysis purposes! 

 
What about multiplicative constants? 

●​ Constants don't significantly affect how 
the runtime scales.  

●​ Whether an algorithm takes 5n or 100n 
operations, the growth is still linear. 

 
What about lower-order additive terms? 

●​ As the input size (n) gets very large, 
lower-order terms like n or log(n) 
become insignificant compared to the 
dominant term (e.g., n^2). 

 
Let's say you have an algorithm with the 
following operation count: 
 
5n^2 + 3n + 10 
 
The dominant term is: n^2 (it grows fastest as n 
increases). 
 
We drop the constants and lower-order terms, 
leaving us with O(n^2). 
 
Worse-case: 
Often, the worst-case scenarios happen 
frequently enough to significantly impact the 
overall performance of a program. They become 
the "bottleneck" — the slowest part that limits 
the speed of the entire process. 
 
Express rate of program growth as a function 
of input size: 
This refers to how the runtime of an algorithm 
increases as the amount of data it processes 
(the input size) grows.  This is where Big O 



notation comes in, providing a way to express 
that growth rate (e.g., O(n), O(n^2), O(log n)). 
 
Evaluate the efficiency of the algorithm:​
Different machines and implementations might 
make the algorithm run faster or slower, but the 
underlying growth rate remains the same. 

 

 

"Lower order" refers to terms in a mathematical 
expression that grow more slowly than other 
terms as the input size increases. 
 
Growth Rates: Different mathematical functions 
have different growth rates. For example: 
 
Constant: O(1) - Doesn't grow at all. 
Logarithmic: O(log n) - Grows slowly. 
Linear: O(n) - Grows proportionally to the input 
size. 
Quadratic: O(n^2) - Grows much faster as the 
input size increases. 
 
Focus on Scalability: When analyzing algorithms, 
we primarily care about how the runtime scales 
with larger inputs. Lower order terms have less 
impact on this scalability compared to the 
dominant term. 
 
Simplification: Big O notation often ignores 
lower order terms and constants to provide a 
clearer picture of the algorithm's overall growth 
rate. This simplification makes it easier to 
compare algorithms and understand their 
efficiency. 
 
Polynomial​
​
n (linear) 
n^2 (quadratic) 



n^3 (cubic) 
 
2n^2 + 5n + 1 
Key Characteristic:  The growth rate is 
determined by the highest power of n. As n 
increases, the term with the highest power 
dominates the overall value of the function. 
 
Exponential​
The variable n appears in the exponent. This 
causes the function value to increase 
dramatically as n grows. 

 

 

 

Let’s take a look at different orders of growth. 
The x axis on these charts is the size of input and 
the y axis is the amount of time taken for that 
input size. 
 
First here we have constant growth, which 
means that the time needed for the program to 
run is constant and the amount of time doesn't 
change as the size of the input gets changed. 
 
Next here we have linear growth, which grows in 
a straight line. 
 
Quadratic starts to grow more quickly. 
 
Here we also have logarithmic, which is always 
better than linear because it slows down as we 
increase the size. 
 
Then n log n or log linear is kind of interesting, 
but it's a very common complexity for really 
valuable algorithms in computer science, 
notably ones for sorting. And it has a nice 
behavior, sort of between the linear and the 
quadratic. 
 



And lastly here we have exponential, which very 
quickly escalates in time as our inputs get 
bigger. 

 

 

We want to evaluate efficiency, particularly 
when the input is very large. What happens 
when we really scale this up? We want to 
express the growth of the program's runtime as 
that input grows. Not the exact runtime, but that 
notion of it. If we doubled the input, how much 
longer does it take? What's the relationship 
between increasing the size of the input and the 
increase in the amount of time it takes to solve 
it? 
 
We're going to put an upper bound on that 
growth. An upper bound means that it’s at least 
as big as or bigger than the actual amount of 
time it's going to take. And we’re going to not 
worry about being precise. We're going to talk 
about the order of rather than the exact growth. 
We don't need to know to the femtosecond how 
long this is going to take, or to the exact number 
of operations this is going to take. 
 
But, we do want to say things like this is going to 
grow linearly. We double the size of the input, it 
doubles the amount of time. Or this is going to 
grow quadratically. We double the size of the 
input, it's going to take four times as much time 
to solve it. 
 
(2x) ^ 2 = (2^2)(x^2) = 4x^2 
 
Or if we’re really lucky, this is going to have 
constant growth, meaning no matter how the 
input changes, it's not going to take any more 
time. 
 



To do that, we're going to look at the largest 
factors in the runtime. Which piece of the 
program takes the most time? And so in order of 
growth, we are going to look at an upper bound 
on the growth as a function of the size of the 
input in the worst case. So here's the notation 
we're going to use. It's called Big O notation.  
 
 

 

 

So here are some examples. If we’re counting 
operations and we come up with an expression 
that has n squared plus 2n plus 2 operations, 
that expression is order n squared. The 2 and the 
2n don't matter. Let’s think about what happens 
if we made n really big. n squared is much more 
dominant than the other terms. We say that's 
order n squared. 
 
Even this expression we say is order n squared. 
So in this case, for lower values of n, this term is 
going to be the big one in terms of number of 
steps. I have no idea how I wrote such an 
inefficient algorithm that it took 100 steps to do 
something. But if we had that expression for 
smaller values of n, this matters a lot. This is a 
really big number. But when we’re interested in 
the growth, then that's the term that dominates. 
When we have expressions, if it's a polynomial 
expression, it's the highest order term. It's the 
term that captures the complexity. Both of these 
are quadratic. This term is order n, because n 
grows faster than log of n. 
 
This funky looking term, even though that looks 
like the big number there and it is a big number, 
that expression we see is order n log n. Because 
again, if I plot out as how this changes as I make 
n really large, this term eventually takes over as 



the dominant term. What about that one? 
What's the big term there? 
 
 
 

 

 

So what does O(n) measure? Well, we're just 
summarizing here. We want to describe how 
much time is needed to compute or how does 
the amount of time, rather, needed to compute 
problem growth as the size of the problem itself 
grows. So we want an expression that counts 
that asymptotic behavior. And we're going to 
focus as a consequence on the term that grows 
most rapidly. 
 
As you give an algorithm more data to process 
(a larger input size), it generally takes longer to 
complete its task. 
 
Asymptotic behavior refers to how the runtime 
of an algorithm changes as the input size (n) 
approaches infinity. We're interested in the 
long-term trends, not minor fluctuations for 
small inputs. 
 
What is important is the dominant term in an 
expression. For example, in 2n^2 + 5n + 10, the 
n^2 term grows much faster than the others as n 
increases. This dominant term dictates the 
overall growth rate of the algorithm. 
 
Constants don't significantly affect how the 
runtime scales with input size. Whether it takes 
5n or 100n operations, the growth is still linear 
O(n).  Similarly, additive constants become 
insignificant as n grows very large. 
 



In essence, this statement is saying that when 
analyzing algorithm efficiency, we care about 
the long-term growth rate as the input size 
increases. We focus on the dominant term and 
use Big O notation to express this growth rate in 
a simplified way, ignoring less important 
constants and lower-order terms. 
 
This approach allows us to: 
 

●​ Compare algorithms: Easily compare the 
efficiency of different algorithms 
regardless of the specific hardware or 
implementation. 

●​ Predict scalability: Understand how an 
algorithm's performance will change as 
the amount of data increases. 

●​ Make informed decisions: Choose the 
most suitable algorithm for a given task, 
especially for large datasets. 

 

Storing Data in Computer Memory (Python) 
Strings 

●​ Immutable: Strings in Python are immutable. This means that once a string is created, its 
contents cannot be changed. Any operation that appears to modify a string actually 
creates a new string in memory. 

●​ Interning: Python uses a technique called "string interning" to optimize memory usage. 
When you create a string, Python checks if an identical string already exists in memory. 
If it does, it reuses that existing string object instead of creating a new one. This is 
particularly common for short strings and identifiers. 

●​ Contiguous Memory: The characters of a string are stored in contiguous memory 
locations. This allows for efficient access to individual characters or substrings. 

 
Lists 

●​ Mutable: Lists, on the other hand, are mutable. You can modify their contents (add, 
remove, or change elements) after they are created. 



●​ Dynamic Arrays: Lists are implemented as dynamic arrays. This means that they can 
grow or shrink in size as needed. When a list runs out of space, a new, larger array is 
allocated in memory, and the elements are copied over. 

●​ References: Lists don't store the actual objects they contain directly. Instead, they store 
references (or pointers) to the memory locations where those objects reside. This 
allows lists to hold objects of different types and sizes. 

 
Note: The exact details of how strings and lists are stored in memory can vary slightly 
depending on the Python implementation and version you're using. 

TODOs 
​ Project 2 (pt. 2) - Search Engine 

○​ Due next Monday at 11:59pm! 
​ HW 9 - Big O 

○​ Releases on Tuesday! 
​ Quiz 8 - Big O 

○​ This Friday - first 15 minutes of class! 
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