Big O
Date: Oct 28, 2024

Big O Notation

Counting Operation Cons

Counting operations seems nice, but...

e We end up getting long, complicated functions (300x? + 10x + 15)
O  We really only care about what happens when the input is large!
e What should we count as an operation?

Is there some way we can

e Count operations but not worry about small variations
e Measure performance when problem size gets arbitrarily large

What we're going to focus on is that idea of
counting operations, but we're not going to
worry about small variations, whether it's three
or four steps inside of the loop. We're going to
show that that doesn't matter.

We're focused on what happens when the size
of the problem gets arbitrarily large. We don't
care about counting things from O up to x when
xis 10 or 20. Instead, what happens whenit's a
million or a billion?

And we want to relate that time needed against
the size of the input, so we can make that
comparison.

So to do that, we have to do a couple of things.
We have to decide what we're going to measure,

and then we have to think how we count without
worrying about implementation details.

Big O Notation: O(_)

Slight tweak to counting operations...we will leave out any multiplicative or
lower-order additive terms. This is the “order of growth” of the function.

We often call this “Big O notation” of the runtime. Measures upper bound on
order of growth.

Used to describe worst case:

e Occurs often and is the bottleneck when program runs
e Express rate of program growth relative to input size

e Evaluate algorithm, not machine / implementation

Focusing on the order of growth!

This means you're focusing on the dominant
term when analyzing the time complexity of an
algorithm.

Big O Notation:
e Big O notation describes the upper
bound of an algorithm's runtime as the
input size grows.




e |t helps us understand how the algorithm
scales.

e We care about the long-term trends.

e Simplify for analysis purposes!

What about multiplicative constants?
e Constants don't significantly affect how
the runtime scales.
e Whether an algorithm takes 5n or 100n
operations, the growth is still linear.

What about lower-order additive terms?

e Astheinput size (n) gets very large,
lower-order terms like n or log(n)
become insignificant compared to the
dominant term (e.g., n"2).

Let's say you have an algorithm with the
following operation count:

5n"2 +3n+10

The dominant term is: N2 (it grows fastest as n
increases).

We drop the constants and lower-order terms,
leaving us with O(n"2).

Worse-case:

Often, the worst-case scenarios happen
frequently enough to significantly impact the
overall performance of a program. They become
the "bottleneck" — the slowest part that limits
the speed of the entire process.

Express rate of program growth as a function
of input size:

This refers to how the runtime of an algorithm
increases as the amount of data it processes
(the input size) grows. This is where Big O




notation comes in, providing a way to express
that growth rate (e.g., O(n), O(n"2), O(log n)).

Evaluate the efficiency of the algorithm:
Different machines and implementations might
make the algorithm run faster or slower, but the
underlying growth rate remains the same.

Lower-Order Terms

o [one] o

v

+ | exponential

"Lower order" refers to terms in a mathematical
expression that grow more slowly than other
terms as the input size increases.

Growth Rates: Different mathematical functions
have different growth rates. For example:

Constant: O(1) - Doesn't grow at all.
Logarithmic: O(log n) - Grows slowly.

Linear: O(n) - Grows proportionally to the input
size.

Quadratic: O(n"2) - Grows much faster as the
input size increases.

Focus on Scalability: When analyzing algorithms,
we primarily care about how the runtime scales
with larger inputs. Lower order terms have less
impact on this scalability compared to the
dominant term.

Simplification: Big O notation often ignores
lower order terms and constants to provide a
clearer picture of the algorithm's overall growth
rate. This simplification makes it easier to
compare algorithms and understand their
efficiency.

Polynomial

n (linear)
n*2 (quadratic)




n”3 (cubic)

2n"2 +5n +1

Key Characteristic: The growth rate is
determined by the highest power of n. As n
increases, the term with the highest power
dominates the overall value of the function.

Exponential

The variable n appears in the exponent. This
causes the function value to increase
dramatically as n grows.

Orders of Growth

Big-O Complexity Chart
Fair] (Good] ERERNIGRE
Ofn"2)

Elements

Let’s take a look at different orders of growth.
The x axis on these charts is the size of input and
the y axis is the amount of time taken for that
input size.

First here we have constant growth, which
means that the time needed for the program to
run is constant and the amount of time doesn't
change as the size of the input gets changed.

Next here we have linear growth, which grows in
a straight line.

Quadratic starts to grow more quickly.

Here we also have logarithmic, which is always
better than linear because it slows down as we
increase the size.

Then nlog n or log linear is kind of interesting,
but it's a very common complexity for really
valuable algorithms in computer science,
notably ones for sorting. And it has a nice
behavior, sort of between the linear and the
quadratic.




And lastly here we have exponential, which very
quickly escalates in time as our inputs get
bigger.

Orders of Growth

The “Order of Growth” of a program looks at the largest factors in the runtime (which part
contributes the most to the runtime when input size gets very big).

Doesn't need to be precise: “order of”, not “exact”, growth
Properties:
e Evaluate program’s efficiency when input is very big

e Express growth of program’s runtime as input size grows
® Put upper bound on growth

Want upper bound (worst case) on growth as function of input size

We want to evaluate efficiency, particularly
when the input is very large. What happens
when we really scale this up? We want to
express the growth of the program's runtime as
that input grows. Not the exact runtime, but that
notion of it. If we doubled the input, how much
longer does it take? What's the relationship
between increasing the size of the input and the
increase in the amount of time it takes to solve
it?

We're going to put an upper bound on that
growth. An upper bound means that it’s at least
as big as or bigger than the actual amount of
time it's going to take. And we’re going to not
worry about being precise. We're going to talk
about the order of rather than the exact growth.
We don't need to know to the femtosecond how
long this is going to take, or to the exact number
of operations this is going to take.

But, we do want to say things like this is going to
grow linearly. We double the size of the input, it
doubles the amount of time. Or this is going to
grow quadratically. We double the size of the
input, it's going to take four times as much time
to solve it.

(2x) ~ 2 = (272)(x"2) = 4x"2

Or if we're really lucky, this is going to have
constant growth, meaning no matter how the
input changes, it's not going to take any more
time.




To do that, we're going to look at the largest
factors in the runtime. Which piece of the
program takes the most time? And so in order of
growth, we are going to look at an upper bound
on the growth as a function of the size of the
input in the worst case. So here's the notation
we're going to use. It's called Big O notation.

Simplification Examples

Drop lower order terms and multiplicative factors
Focus on dominant term: term that will increase the fastest

2n* + 2n + 2 2n?

10000 + 16n° + 100n 106n

log(n) + n + 4 n

0.0001 * n * log(n) + 30@n 0.0001 n log n
2n* + 3" 3"

10'%° 1* 10

o(n?)
o(n’)
0(n)
0(n log n)
o(3")
0(1)

So here are some examples. If we're counting
operations and we come up with an expression
that has n squared plus 2n plus 2 operations,
that expression is order n squared. The 2 and the
2n don't matter. Let’s think about what happens
if we made n really big. n squared is much more
dominant than the other terms. We say that's
order n squared.

Even this expression we say is order n squared.
So in this case, for lower values of n, this term is
going to be the big one in terms of number of
steps. | have no idea how | wrote such an
inefficient algorithm that it took 100 steps to do
something. But if we had that expression for
smaller values of n, this matters a lot. This is a
really big number. But when we're interested in
the growth, then that's the term that dominates.
When we have expressions, if it's a polynomial
expression, it's the highest order term. It's the
term that captures the complexity. Both of these
are quadratic. This term is order n, because n
grows faster than log of n.

This funky looking term, even though that looks
like the big number there and it is a big number,
that expression we see is order n log n. Because
again, if | plot out as how this changes as | make
n really large, this term eventually takes over as




the dominant term. What about that one?
What's the big term there?

What's O(_) Measuring?

Amount of time needed grows as size of input, n, to problem grows
Want to know asymptotic behavior as size of problem gets large
Focus on term that grows most rapidly in sum of terms

Ignore multiplicative and additive constants

So what does O(n) measure? Well, we're just
summarizing here. We want to describe how
much time is needed to compute or how does
the amount of time, rather, needed to compute
problem growth as the size of the problem itself
grows. So we want an expression that counts
that asymptotic behavior. And we're going to
focus as a consequence on the term that grows
most rapidly.

As you give an algorithm more data to process
(a larger input size), it generally takes longer to
complete its task.

Asymptotic behavior refers to how the runtime
of an algorithm changes as the input size (n)
approaches infinity. We're interested in the
long-term trends, not minor fluctuations for
small inputs.

What is important is the dominant term in an
expression. For example, in 2n"2 + 5n + 10, the
n"2 term grows much faster than the others as n
increases. This dominant term dictates the
overall growth rate of the algorithm.

Constants don't significantly affect how the
runtime scales with input size. Whether it takes
5n or 100n operations, the growth is still linear
O(n). Similarly, additive constants become
insignificant as n grows very large.




In essence, this statement is saying that when
analyzing algorithm efficiency, we care about
the long-term growth rate as the input size
increases. We focus on the dominant term and
use Big O notation to express this growth rate in
a simplified way, ignoring less important
constants and lower-order terms.

This approach allows us to:

e Compare algorithms: Easily compare the
efficiency of different algorithms
regardless of the specific hardware or
implementation.

e Predict scalability: Understand how an
algorithm's performance will change as
the amount of data increases.

e Make informed decisions: Choose the
most suitable algorithm for a given task,
especially for large datasets.

Storing Data in Computer Memory (Python)

Strings

e Immutable: Strings in Python are immutable. This means that once a string is created, its
contents cannot be changed. Any operation that appears to modify a string actually
creates a new string in memory.

e Interning: Python uses a technique called "string interning" to optimize memory usage.
When you create a string, Python checks if an identical string already exists in memory.
If it does, it reuses that existing string object instead of creating a new one. This is
particularly common for short strings and identifiers.

e Contiguous Memory: The characters of a string are stored in contiguous memory
locations. This allows for efficient access to individual characters or substrings.

Lists
e Mutable: Lists, on the other hand, are mutable. You can modify their contents (add,
remove, or change elements) after they are created.




e Dynamic Arrays: Lists are implemented as dynamic arrays. This means that they can
grow or shrink in size as needed. When a list runs out of space, a new, larger array is
allocated in memory, and the elements are copied over.

e References: Lists don't store the actual objects they contain directly. Instead, they store
references (or pointers) to the memory locations where those objects reside. This
allows lists to hold objects of different types and sizes.

Note: The exact details of how strings and lists are stored in memory can vary slightly
depending on the Python implementation and version you're using.

TODOs

[J Project 2 (pt. 2) - Search Engine
o Due next Monday at 11:59pm!

0 HW9-BigO
o Releases on Tuesday!
[J Quiz8-BigO

o This Friday - first 15 minutes of class!



	Big O Notation 
	Storing Data in Computer Memory (Python) 

	TODOs 

