

p-SymPy

Speeding up SymPy’s new assumptions

Project Manager: Tilo Reneau-Cardoso, Senior, Math & Computer Science Major
Contact: tiloreneau@gmail.com

Project Overview

Have you ever wanted to contribute to open source software? Join my project and gain
the opportunity to do just that! My goal is to enhance the performance of the
assumptions module in SymPy, a widely-used Python-based computer algebra system
(think WolframAlpha, but in Python). As an expert in SymPy’s new assumption system,
I’ve guided newcomers in contributing to it, drawing from my experience as a
contributor during Google Summer of Code 2023.

SymPy's assumption system allows users to query properties (or "assumptions") about
symbols and expressions, such as whether a symbol represents a positive, real, or
integer value. Its primary purpose is to enable more simplifications and manipulations
of mathematical expressions. See here for more details about SymPy’s assumptions.

SymPy actually has two different assumption systems—the “old” and “new”
assumptions. For more than a decade, there has been an effort to transition the new
assumption system which allows for more types of queries (e.g. reasoning about
inequalities). However, the new assumptions are much slower, so it’s the goal of my
project to do what we can to improve their speed. See here for a blog post I’m writing
which contains additional details.

Tech Stack

-​ Python

https://www.sympy.org/en/index.html
https://summerofcode.withgoogle.com/archive/2023/projects/vqchZ67V
https://docs.sympy.org/latest/guides/assumptions.html
https://tilorc.github.io/posts/speeding-up-the-new-assumptions/

-​ GitHub/Git

Ethical Considerations

SymPy is liscenced under the New BSD License. This is a permissive liscence which
means people can use SymPy freely for pretty much whatever purpose. SymPy is
sometimes used by scientists and people doing physics. It’s likely that SymPy has at
some point been used to help make weapons in some capacity. So by contributing to
SymPy you’re improving software that can be used by anyone, including potentially
nefarious people.

Team Structure

-​ Target Team Size: ~5 students (flexible)
-​ There’s a chance I decide to accept a very large number of people.

-​ Subteam Structure: flexible
-​ Organizational & Collaboration Frameworks: GitHub

Timeline

Week 1-2

-​ Everyone will open a pull request attempting to fix some bug or issue in SymPy.
This should help everyone become familiar with the process of contributing to
SymPy.

-​ See this link for a list of bugs with the assumptions. I believe one of them is
related to the old assumptions, so ignore that one. A lot of pull requests have
opened up fixing some of these, so I may have to look for more bugs.

-​ The pull request doesn’t have to be a bug fix. For example, the following PR
could be revived: Improved docstring for EncodedCNF.

Week 2 and beyond
-​ People will be assigned to working on subprojects. As there’s only a limited

amount of time in the semester, I can’t guarantee that any of these subprojects
will get completed. However, if they are completed, I recently got merge access
to SymPy, so I’ll be able to merge your changes if I think they are beneficial to
SymPy and meet all of SymPy’s standards for contributions.

-​ I expect some degree of collaboration between everyone. Pull requests are
required to be reviewed before they can be merged, so I expect project
members to be reviewing the pull requests of other project members.

https://en.wikipedia.org/wiki/BSD_licenses#3-clause
https://en.wikipedia.org/wiki/Permissive_software_license
https://docs.sympy.org/latest/contributing/new-contributors-guide/workflow-process.html
https://docs.sympy.org/latest/contributing/new-contributors-guide/workflow-process.html
https://github.com/sympy/sympy/issues?q=is%3Aopen+label%3A%22Wrong+Result%22++label%3Aassumptions+
https://github.com/sympy/sympy/pull/25390/files

Project Member Requirements​

-​ Self-initiative
-​ You should be proactive in problem-solving, learning, and collaborating

with others.
-​ Time commitment

-​ At least 4+ hours per week.
-​ Participation in 1-hour weekly meeting is required.

-​ CS62/CS70 or equivalent
-​ If you haven’t taken data structures yet, evidence of coding proficiency

such as personal projects can substitute it.
-​ Previous experience with GitHub/Git

-​ If lots of people are struggling with Git, and they’re not able to help each
other, it’s not feasible for me to help everyone. So I expect everyone to
have some knowledge of Git and be able to help themselves and others if
they are experiencing problems. Even having used Git quite a lot, I still
struggle with Git from time to time, so it’s normal to have difficulties with
it, and I don’t expect anyone to be an expert or even good at it.

-​ Python proficiency
-​ Basic familiarity with logic

-​ (e.g. truth tables, boolean variables)
-​ An interest in math

Additional Skills I’m Looking For

If you’ve taken any classes related to logic it would be a big plus. For example:

-​ PHIL060 PO - Logic
-​ Applied Logic and Automated Reasoning (CS 181U)

Subprojects

The following is an incomplete list of possible subprojects. Depending on the number
of people accepted and their interest, some of them may not be assigned anyone. You
may be involved in multiple subprojects as I expect project members to review each
others pull requests before I review them.

It’s important that everyone gets credit for work they did and no one gets credit for
work they didn’t do. If you’re working together on the same subproject, you should
either pair program and coauthor commits or break up the work in a way such that
each of you makes separate commits. It’s okay to do a mix of both, but don’t coauthor
commits if you weren’t pair programing and make sure you do coauthor commits if you
were pair programing.

Implement the changes I describe in my blogpost. (3-4 people)

This is by far the largest and most ambitious of the subprojects. Parts 1 and 2 can be
worked on concurrently by different people. Part 3 can be most easily completed by
the part 2 group, but the part 1 group could also work on it. ​

1.​ Implement bad but easy to implement prototype (1-2 people)
-​ This might be the most difficult part. Actually implementing the prototype

won’t be that bad. However, integrating the prototype into the SAT solver
may be challenging and other difficulties may arise. The idea is that this
group will connect things properly so the part 2 group doesn’t have to
worry about that.

2.​ Implement good enough version (1-2 people)
3.​ Implement efficient minimal conflict clause version
4.​ In the unlikely event that there’s time, we can work on replacing the sathandlers

with a similar SMT system.

Make SAT solver incremental (1-2 people)

-​ See this issue.

Implement Tseytin transformation (1-2 people)

-​ See here for a wikipedia article discussing the Tseytin transformation.
-​ See this issue for context about why the Tseytin transformation would be useful

to SymPy’s assumption system.

Implement handling for non-rational and infinite values in Linear Real Arthmetic Theory
Solver (2-3 people)

-​ I haven’t finished writing an issue for this. This is the file that would need to be
improved.

-​ Could be split up into two different sub-subprojects.

Consolidate `satask` and `lra_satask` into one function (1-2 people)

https://tilorc.github.io/posts/speeding-up-the-new-assumptions/
https://tilorc.github.io/posts/speeding-up-the-new-assumptions/#a-bad-but-easy-to-implement-theory-solver
https://tilorc.github.io/posts/speeding-up-the-new-assumptions/#a-theory-solver-thats-good-enough
https://github.com/sympy/sympy/issues/27477
https://en.wikipedia.org/wiki/Tseytin_transformation#:~:text=The%20Tseytin%20transformation%2C%20alternatively%20written,the%20size%20of%20the%20circuit
https://github.com/sympy/sympy/issues/27467
https://github.com/sympy/sympy/blob/master/sympy/logic/algorithms/lra_theory.py

-​ This can’t really happen until lots of other changes are implemented such as
speeding up the assumptions significantly. But work can be started on this and
whatever roadblocks are present can be documented.

Document the New Assumptions (1-2 people)

-​ Write a how to guide like this one but for the new assumptions. Or maybe
expand that one.

https://docs.sympy.org/latest/guides/assumptions.html

	p-SymPy
	Team Structure
	Timeline
	Project Member Requirements​
	Additional Skills I’m Looking For
	Subprojects

