
CS61 Section Notes - Shell Stuff

We’ll be using the section repo today. If you don’t have it handy run
“git clone git@code.seas.harvard.edu:cs61/cs61-section.git” or otherwise just git pull to get the
newest code (it’ll be in the s08/ directory). Type “make” and then to run some file foo.c
referenced in the notes, just do “./foo”.

1. fork(), execvp(), waitpid()
What does fork() do?
pid_t fork(void);

●​ Creates a new child process
●​ Copies all the memory of the parent process to the child process

○​ Note that in pset4 you copied all user-accessible, writeable memory in the parent
to the child. Most OS’s would actually use copy-on-write, where all writeable
memory is marked as readonly in both parent and child, and then copied when
either parent or child attempts to write to it.

●​ child process starts running as though it had called fork(), but 0 is returned to it. (RUN
fork_1.c)

●​ parent process resumes running, with the child’s pid returned from the fork() call
●​ Copies the parent’s file descriptor table to the child. This means the child has the same

files open as the parent. Also, these open files share state, so if the parent seeks in one
of these open files, the seek will effect both parent and child

QUESTION:
Look through fork_2.c. What are possible outputs?

int execvp(const char *file, char *const argv[]);

●​ takes in a file (either a path to a binary like “./prog” or something like “ls”, which it will
then find the path to), and a NULL terminated array of arguments to the program (like
main’s argv, with argv[argc] (the end of the array) == NULL)

●​ executes the given program, replacing the current memory of the calling program with
the memory for the given program (but the file descriptor table stays the same--more on
this later)

●​ this also means that on success execvp will not return (because the program that called
it “turns into” the program being executed)

pid_t waitpid(pid_t pid, int *status, int options)

mailto:git@code.seas.harvard.edu

●​ waitpid(pid, NULL, 0); // returns when the process with process id pid exits
●​ we could also pass in an int status by reference to get various information about the

process after it exits. For instance the following:
int status;
waitpid(pid, &status, 0);
// make sure it exited normally (vs e.g. being killed)
if (WIFEXITED(status))

printf(“%d\n”, WEXITSTATUS(status));

Will print the child’s exit status (i.e. the return value of main or the number passed to an

exit() call).
See man waitpid for more details.

Using this we can now make a program that takes as an argument a program, runs that
program, waits for it to finish, and then prints out “done” (sounds suspiciously like a shell!).
(RUN fork_3.c; Reproduced Below)

int main(int argc, char **argv) {

​ if (argc != 2) {

​ ​ printf(“Usage: %s program-name”, argv[0]);

​ ​ exit(1);

}

pid_t pid = fork();

if (pid == -1) {

​ perror(“Could not fork!\n”);

} else if (pid == 0) { // child

​ // a program’s first argument is the program’s name/path

​ char *child_argv[] = {argv[1], NULL};

​ execvp(argv[1], child_argv); // does not return on success

​ perror(“Couldn’t execute program!\n”);

​ } else { // parent

​ ​ waitpid(pid, NULL, 0);

​ ​ printf(“done\n”);

}

}

More on fork()
How many a’s will print out when the following programs are run:
1. (RUN fork_4.c; Reproduced Below)

int main() {
​ printf(“a”);

​ fork();
​ printf(“a”);
}

2. (RUN fork_5.c; Reproduced Below)
int main() {
​ printf(“a\n”);
​ fork();
​ printf(“a\n”);
}

3. What about if we redirected program 1’s output to a file?

4. Program 2’s output?

2. Backgrounding in Shell
Let’s say we want to get a list of all files on our system that changed in the last 24 hours.
The command find / -ctime -1 will do that for us (see man find for more info on how find
works), but will take a really long time to run.
So let’s background it!
find / -ctime -1 > changed-files.txt &
The & tells the shell to run the given program in the background. So it will write a list of changed
files to changed-files.txt, in the background (meaning we’ll get a new shell prompt immediately
instead of having to wait for it to complete).

But what if we’d already been running find / -ctime -1 > changed-files.txt in the foreground for
an hour before we saw this?!
You can type Ctrl+z to suspend the current process. This stops execution of the process but
does not kill it. Now, we can type “bg” and the process we just suspended will be resumed but
now in the background.

If we later wanted to put our process back in the foreground, we simply type “fg”.

We can get a list of (and the statuses of) backgrounded processes by typing “jobs”.
So if you have multiple backgrounded processes running, you can get a list of them with “jobs”
and then refer to a specific process with “%2” (or whatever the number of the process listed in
jobs is). i.e. kill %1

Now, how would we modify our earlier program (fork_3.c) to “background” the program it runs
(i.e. return immediately without waiting for the program)?

3. stdin, stdout, stderr, and piping/redirection
stdin: standard input, a stream for input to a program (e.g. when the bomb prompted you for
input)
stdout: standard output, a stream for output (where printf goes)
stderr: standard error, another stream for output, usually used for debugging information and
errors.

For instance if we run echo foo, we get the following diagram:

Note that “foo” is a command line argument, not from stdin, and echo only prints to
stdout (not stderr).

Let’s now run the command echo foo > temp.txt. “>” redirects stdout to a file. So now
what would have been printed to stdout will be written to temp.txt:

Note that “>” will overwrite the previous contents of temp.txt.
Let’s say we instead want to append to temp.txt. Let’s run
echo “ bar” >> temp.txt
(note the space before bar)
and now temp.txt will consist of “foo bar”.

We can use this same trick with stdin:
Run wc -w < temp.txt
and you should get “2” as output:

What’s wc do? Let’s find out! Run man wc.
It will tell us that wc (stands for word count) tells us the word, line, character, etc. count
of either standard input or a file passed in as an argument. The -w asks specifically for
the word count. By using “<”, we are redirecting stdin to be the file temp.txt, so wc is
getting the word count of that file (which it “thinks” is stdin).

We can also pipe the output of a program to the input of a different one:
Run echo “foo bar baz” | wc -w
We should get output 3 (since there are 3 words). The “|” tells the shell to take the stdout of the
command on the left side, and feed in as the stdin to the program on the right side. This looks
like so:

OK, then what’s the point of stderr, especially if stderr and stdout both get printed out to our
console?

Let’s run fd_1 in the section repo. If we just do ./fd_1 it mixes normal program output with
warning/error output. This is annoying and makes it harder to separate the real output from
debugging info/warnings/errors.
But luckily, if we look at fd_1.c it’s printing its output to stdout, but it prints the warning message
to stderr, so we can separate them!
e.g. to store the output in a file and just keep the error messages in the terminal we can run
./fd_1 > out.txt
If we wanted to store both stdout and stderr, we can do ./fd_1 > out.txt 2> err.txt and now the
output (stdout) will be in the file out.txt and the error messages will be in the file err.txt.

A practical example: if you remember to when we ran find / -ctime -1, you may have seen some
permissions errors getting printed, even when we backgrounded the process (because
backgrounding does not suppress stdout/stderr from being output).
We could instead run find / -ctime -1 > changed-files.txt 2> /dev/null &
and now those permissions errors would be ignored (/dev/null is a special file in unix where
writing to it does essentially nothing). Or if we did want to know about the errors we’d do
find / -ctime -1 > changed-files.txt 2> errors.txt &

How do we implement things like input/output redirection and pipes?

int dup2(int oldfd, int newfd)

●​ syscall which makes newfd a copy of oldfd (closing the current newfd if necessary)
●​ i.e. reading and writing from newfd will read and write from the file referred to by oldfd.

Extending our earlier program, how can we make it take 2 more arguments, an input and an
output file, so that it will run the given program but with the first file as standard input and the
2nd file as standard output? (RUN dup2_1.c)

int main(int argc, char **argv) {

​ if (argc != 4) {

​ ​ printf(“Usage: %s program-name infile outfile”, argv[0]);

​ ​ exit(1);

}

pid_t pid = fork();

if (pid == -1) {

​ perror(“Could not fork!\n”);

} else if (pid == 0) { // child

int fdin = open(infile, O_RDONLY);

int fdout = open(outfile, O_WRONLY|O_CREAT);

dup2(fdin, STDIN_FILENO); // copy fdin fd to stdin fd

dup2(fdout, STDOUT_FILENO); // copy fdout to stdout fd

// close now unused fds

close(fdin);

close(fdout);

​ char *child_argv[] = {argv[1], NULL};

​ execvp(argv[1], child_argv); // does not return on success

​ perror(“Couldn’t execute program!\n”);

​ } else { // parent

​ ​ waitpid(pid, NULL, 0);

​ ​ printf(“done\n”);

}

}

What this is doing: we open the given in and out files, and keep track of their file
descriptors. Then we duplicate those file descriptors into the stdin and stdout file
descriptors respectively. Now, the stdin file descriptor is actually referring to the
infile we opened, rather than terminal input, and stdout refers to our outfile.

Notice that we’re doing this in our child process, so it is our child’s stdin/stdout

that are being changed. execvp() doesn’t mess with file descriptors, so whatever
program we run ends up with stdin/stdout that are actually going to our input and output
files!

What about piping from one program to another?
Let’s look at the Unix pipe syscall:
int pipe(int pipefd[2]);

●​ takes in an (uninitialized) array of 2 ints
●​ after calling pipe, the first element of the array (pipefd[0]) will be the “read” end of the

pipe, and the 2nd element (pipefd[1]) will be the “write” end of the pipe. So anything
written to pipefd[1] can then be read from pipefd[0].

Let’s see this in action by extending our earlier program once more, to where we pass in a
program name and some text which will be made the standard input to the program:
(RUN dup2_2.c)

int main(int argc, char **argv) {

​ if (argc != 3) {

​ ​ printf(“Usage: %s program-name text-to-pipe”, argv[0]);

​ ​ exit(1);

}

int pipefd[2];

pipe(pipefd); // creates the pipe

pid_t pid = fork();

if (pid == -1) {

​ perror(“Could not fork!\n”);

} else if (pid == 0) { // child

​ close(pipefd[1]); // close unused write end (for child)

// make child’s stdin the pipe’s read end

​ dup2(pipefd[0], STDIN_FILENO);

​ close(pipefd[0]);

​ char *child_argv[] = {argv[1], NULL};

​ execvp(argv[1], child_argv); // does not return on success

​ perror(“Couldn’t execute program!\n”);

​ } else { // parent

​ ​ close(pipefd[0]); // close unused read end (for parent)

​ ​ // write the given text to the pipe’s write end

​ ​ write(pipefd[1], argv[2], strlen(argv[2]));

​ ​ close(pipefd[1]);

​ ​ waitpid(pid, NULL, 0);

​ ​ printf(“done\n”);

}

}

And now if the program we pass in reads from stdin, it will get the contents of the 2nd argument!
(because we made its stdin the pipe’s read end, and we wrote our 2nd argument to the pipe’s
write end)

QUESTION: Now that we know the basics of how pipes are implemented, how many a’s would
we expect ./fork_5 | cat to output?

See pipe.c to see how you can pipe the output of one program into another, e.g.

●​ ./pipe ls wc ===> would perform the equivalent of ===> ls | wc

int main(int argc, char **argv) {

 if (argc != 3) {

 printf("Usage: %s first-prog second-prog\n", argv[0]);

 exit(1);

 }

 // This will perform: first-prog | second-prog

 int pipefd[2];

 pipe(pipefd);

 pid_t firstpid = fork();

 if (firstpid == -1) {

 perror("Could not fork!\n");

 exit(1);

 } else if (firstpid == 0) {

 // first child process

 close(pipefd[0]); // close unused read end for first child

 // make first child's stdout the pipe's write end

 dup2(pipefd[1], STDOUT_FILENO);

 close(pipefd[1]); // no need keep 2 copies of pipe

 char *child_argv[] = {argv[1], NULL};

 execvp(argv[1], child_argv); // does not return on success

 perror("Couldn't execute program!\n");

 exit(1);

 }

 pid_t secondpid = fork();

 if (secondpid == -1) {

 perror("Could not fork!\n");

 exit(1);

 } else if (secondpid == 0) {

 // second child process

 close(pipefd[1]); // close unused write end of second child

 // make second child's stdin the pipe's read end

 dup2(pipefd[0], STDIN_FILENO);

 close(pipefd[0]); // no need keep 2 copies of pipe

 char *child_argv[] = {argv[2], NULL};

 execvp(argv[2], child_argv); // does not return on success

 perror("Couldn't execute program!\n");

 exit(1);

 }

 // back in main parent process

 close(pipefd[0]); // parent does not read or write to pipe

 close(pipefd[1]);

 waitpid(firstpid, NULL, 0);

 waitpid(secondpid, NULL, 0);

 printf("done\n");

}

	CS61 Section Notes - Shell Stuff

