
CSE 344 | 25wi | Introduction to Data Management

Introduction
Congratulations, you are opening an airline management service!

In this project, you have two main tasks:

●​ Design a database of airline flights, their customers, and their reservations
●​ Prototype the management service; it should connect to a live database and implement

the functionality below
○​ The prototype uses a command-line interface (CLI), but in real life you would

probably develop a web-based interface

We have provided code for the CLI (FlightService.java) and a partial backend (Query.java +
PasswordUtils.java). For this project, your task is to implement the rest of the backend. You can
use any of the classes from the Java 21 standard JDK.

Changes to the specification after release are highlighted in red.

Project Setup
1.​ Install Postgres (instructions)​

2.​ Install Maven (build system)

a.​ If using OSX, we recommend using Homebrew and installing with brew
install maven. If you don't have Homebrew: instructions @ https://brew.sh/

b.​ On Windows, download the "Binary zip archive" .zip file from the maven
download page linked above. Unzip it wherever you want maven to live
permanently on your machine. Then add the …/bin folder to your PATH.​

3.​ Download the starter code (.zip format)​

4.​ Set up your Flights database in Postgres
a.​ In psql, run: CREATE DATABASE flights;
b.​ Then run \c flights to connect to the database you just created. In the future,

when you invoke psql, you should repeat this \c command each time.
c.​ Follow the comments in the provided createTables.sql file to design your create

table statements. Run those create table statements. (Note the schema is slightly
different from earlier homeworks.)

d.​ Download the flights data. (Note this is slightly different from the data we used
earlier this quarter.) Unzip it.

e.​ Run the following \copy commands in psql​
​
\copy CARRIERS from 'carriers.csv' CSV​
\copy MONTHS from 'months.csv' CSV​
\copy WEEKDAYS from 'weekdays.csv' CSV​
\copy FLIGHTS from 'flights-small.csv' CSV​
​
You may need to adjust the filenames to point to where you unzipped the data.

https://docs.oracle.com/en/java/javase/21/docs/api/index.html
https://courses.cs.washington.edu/courses/cse344/25wi/resources/software-setup.html#postgres-installation
https://maven.apache.org/
https://brew.sh/
https://drive.google.com/file/d/1LepvoihoPKpkMGHE8ksS_Oea_sFTA8L1/view?usp=drive_link
https://drive.google.com/file/d/19Fjx6y-3Jdbf10hFHWqvqTSrCmcf6m-i/view?usp=drive_link

CSE 344 | 25wi | Introduction to Data Management

5.​ Configure your JDBC Connection
In the top level directory, edit the connection settings in dbconn.properties.
Specifically, change SERVER_URL, DATABASE_NAME, USERNAME, PASSWORD, and
UWNetID. This allows Query.java to connect to your Postgres instance.

Database connection settings​
flightapp.server_url = SERVER_URL
flightapp.database_name = DATABASE_NAME
flightapp.username = USERNAME
flightapp.password = PASSWORD
flightapp.tablename_suffix = UWNetID

You should use the following details:

○​ SERVER_URL will be "localhost" when working locally
○​ DATABASE_NAME is the name of the database you created (flights)
○​ The USERNAME and PASSWORD are the same credentials you use to login to your

database/server when you installed Postgres
6.​ Build the application​

Package the application files and its dependencies into a single .jar file, then run the
main method from FlightService.java.
(You must run these commands in the project directory where the pom.xml file is located.
Otherwise, you will run into an error that says “...there is no POM in this directory”)

$ mvn clean compile assembly:single
$ java -jar target/FlightApp-1.0-jar-with-dependencies.jar

If you want to run directly without first creating a jar, you can run:

$ mvn compile exec:java

If either of those two commands starts the UI below, you are good to go!

*** Please enter one of the following commands ***​
> create <username> <password> <initial amount>​
> login <username> <password>​
> search <origin city> <destination city> <direct> <day> <num
itineraries>​
> book <itinerary id>​
> pay <reservation id>​
> reservations
> quit

NOTE: mvn compile exec:java does not run your createTables.sql file. If your
tables aren’t recognized the first time, or you make changes to them later, run any of the
test commands first, even if it fails the tests. Alternatively, you can just manually paste
and run your CREATE TABLE statements into Postgres the first time.

CSE 344 | 25wi | Introduction to Data Management

Project Requirements
Data Model
The airline management system consists of the following constructs. These constructs are not
necessarily entity sets or database tables; it is up to you to decide what to store persistently.

●​ Flights / Carriers / Months / Weekdays: For this project you should consider them
to be “read-only”.​

●​ Users: A user has a username (postgres type: text), password (postgres type: bytea for
"byte array"), and balance (int) in their account. All usernames should be unique in the
system. Each user can have any number of reservations.​
​
Usernames are case insensitive; this is the default for Postgres (no it's not). However,
since we are salting and hashing our passwords through the Java application,
passwords ARE case sensitive. You can assume that all usernames and passwords
have at most 20 characters.​

●​ Itineraries: An itinerary is either direct or indirect.​
​
A direct itinerary or direct flight consists of a single flight, from the origin to the
destination. In contrast, an indirect itinerary (alternatively known as a two-hop
itinerary) consists of two flights, from the origin to a stopover city and then from the
stopover city to the destination. This system does not support itineraries with more than
one stopover city.​

●​ Reservations: A booking for an itinerary, which may consist of one or two flights (i.e.
direct or indirect). Each reservation can either be paid or unpaid and has a unique ID.

Once you decide which logical entities to persist in a table, you will create them using
createTables.sql which is discussed in more detail in the M1 section below.

Application Logic
The bulk of your application’s logic is implemented in Query.java and PasswordUtils.java. Each
command in the application menu has a corresponding method that you will implement.

●​ create takes in a new username, password, and initial account balance as input and
creates a new user account with that initial balance. create should return an error
someone attempts to create an account with a negative balance or if the username is
already taken.​
​
Usernames are not case-sensitive; in other words, "User1", "USER1", and "user1" are all
equivalent. You can assume usernames and passwords have at most 20 characters.​

https://www.postgresql.org/docs/current/datatype-binary.html

CSE 344 | 25wi | Introduction to Data Management

​
We will store the salted password hash, as well as the salt itself, to avoid storing
passwords in plain text. See PasswordUtils.java for more information. Note that we
will store both the salted password hash and the salt itself in the same field in our table. ​

●​ login accepts a username and password; it checks that the user exists in the database
and that the provided password matches the stored one. You can use
PasswordUtils.java to help with this.​
​
Within a single session (that is, a single instance of your program), only one user should
be logged in. To keep things simple, track the login status of a User using a local variable
in your program; you should not track a user's login status inside the database.​

●​ search takes as input an origin city (string), a destination city (string), a flag indicating
whether the results should only consist of direct flights (0 or 1), the date (int), and the
maximum number of itineraries to be returned (int). For the date, we only need the day of
the month, since our dataset comes from July 2015.​
​
Return only flights that are not canceled, ignoring the capacity and number of seats
available. For indirect itineraries, different carriers can be used for each leg; the first and
second flight only must be on the same date (e.g. if flight1 runs on July 3 and flight2 runs
on July 4th, then you can't put these two flights in the same itinerary).

Sort your results on total actual_time (ascending). If a tie occurs, break that tie by
choosing the smaller fid value; for indirect itineraries, use the first then second fid for
tie-breaking.​
​
Below is an example of a single direct itinerary from Seattle to Boston:

Itinerary 0: 1 flight(s), 297 minutes​
ID: 60454 Day: 1 Carrier: AS Number: 24 Origin: Seattle WA Dest:
Boston MA Duration: 297 Capacity: 14 Price: 140

​

Below is an example of an indirect itinerary from Seattle to Boston.

Itinerary 0: 2 flight(s), 317 minutes​
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA
Dest: Orlando FL Duration: 159 Capacity: 10 Price: 494​
ID: 726309 Day: 10 Carrier: B6 Number: 152 Origin: Orlando FL
Dest: Boston MA Duration: 158 Capacity: 0 Price: 104​
Itinerary 1: 2 flight(s), 317 minutes​
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA
Dest: Orlando FL Duration: 159 Capacity: 10 Price: 494​
ID: 726464 Day: 10 Carrier: B6 Number: 452 Origin: Orlando FL
Dest: Boston MA Duration: 158 Capacity: 7 Price: 760

​
The returned itinerary IDs should start from 0 and increase by exactly 1, as shown

CSE 344 | 25wi | Introduction to Data Management

above. All flights in an indirect itinerary should be under the same itinerary ID; in other
words, the user should only need to book using a single itinerary ID, regardless of
whether they are flying a direct or indirect itinerary. If no itineraries match the search
query, the system should return an informative error message; see QueryAbstract.java
for the actual text. ​
​
The user need not be logged in to search for flights, but these search results cannot be
booked (see book for more details).

Lastly, your code should always prefer returning direct itineraries, even if the direct
itinerary is slower than an indirect one.

What this means is we first choose direct itineraries, but we sort on flight time (whether
or not the itinerary is direct). So if we want k itineraries, and we have d direct flights, we
want i = k - d indirect flights (assuming k > d otherwise i = 0). You break ties for flight
time with the fid.

For example, say we have the following itineraries (D for direct and I for indirect):

●​ D1: 50 min
●​ D2: 30 min​

●​ I1: 40 min
●​ I2: 10 min
●​ I3: 100 min
●​ I4: 80 min

We would return the following itineraries in the order shown for these search requests:

​
User has requested only direct flights:

○​ 1 itinerary: D2
○​ 2 itineraries: D2 D1

User has requested indirect and direct flights:

●​ 1 itinerary: D2
●​ 2 itineraries: D2 D1
●​ 3 itineraries: I2 D2 D1
●​ 4 itineraries: I2 D2 I1 D1
●​ 5 itineraries: I2 D2 I1 D1 I4
●​ 6 itineraries: I2 D2 I1 D1 I4 I3

In other words, get the maximum number of direct flights, then fill any missing itineraries
with indirect itineraries, combine the two lists, and finally sort on time.

●​ book lets a user reserve an itinerary using its itinerary number, as returned by the
previous search. The user must be logged in to book an itinerary, and they must enter a
valid itinerary id returned from the most recent search performed within the same login
session. Once the user logs out (by quitting the application), logs in (if they previously
were not logged in), or performs another search within the same login session, then all

CSE 344 | 25wi | Introduction to Data Management

previously returned itineraries are invalidated and cannot be booked.​
​
A user cannot book a flight if the flight's maximum capacity would be exceeded; each
flight’s capacity is stored in the FLIGHTS table, and you should have records as to how
many seats have already been reserved. If the booking is successful, assign a new
reservation ID to the booked itinerary. Notably, do not modify the FLIGHTS table.​

●​ pay allows a user to pay for an existing-but-unpaid reservation. It should first verify the
user has enough money to pay for all the flights in the given reservation; if so, it updates
the reservation status.​

●​ reservations lists the currently logged-in user’s reservations. The reservations should
be displayed using a format similar to the search results, and they should be shown in
increasing order of reservation ID.​
​
As noted above, each reservation must have a numeric identifier which is different for
each reservation in the entire system. There are several ways to implement this:

○​ Define a "ID" table that stores the next value to use, and update it each time a
new reservation is made.

○​ Calculate the next reservation ID by counting the number of existing reservations
or calculating the current maximum ID.​

●​ quit leaves the interactive system.

❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗

CAUTION: Ensure your code produces its output in the exact same format as described!
The autograder expects its output in our format.

❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗ ❗🕴️❗

Testing
The test format is described in more detail in this companion document. You will be required to
submit your own test cases for both M1 and M2.

Although we've provided some test cases, the testing we provide is incomplete. It is up to you
to implement your solutions so that they completely adhere to the specification; “but it passed all
the provided tests!” is no guarantee that your code will get full points. It’s a good practice to
develop test cases for all erroneous conditions (e.g., booking on a full flight, logging in with a
non-existent username) that your code is built to handle, but you’ll also want test cases for
successful conditions as well. Be creative!

Transaction Management (M2 only)
For the second milestone, you must use SQL transactions to guarantee ACID properties;
specifically, you will need to define begin-transaction and end-transaction statements and to
insert them in appropriate places in Query.java. You must use transactions correctly such
that race conditions introduced by concurrent execution cannot lead to an inconsistent state of

https://docs.google.com/document/d/1VMv418wNPAIAMUOTlFBwxD0MpWG7E_E4lrvywQAm04A/edit?usp=sharing

CSE 344 | 25wi | Introduction to Data Management

the database. Hint: do not include user interaction inside a SQL transaction; that is, don't begin
a transaction then wait for the user to decide what she wants to do (why?).

Recall that, by default, each SQL statement executes in its own transaction. As discussed in
lecture, to group multiple statements into a transaction we use the following SQL statements:

BEGIN TRANSACTION​
....
-- eg, UPDATE or DELETE FROM statements
....​
COMMIT or ROLLBACK

Executing transactions from Java has the same semantics: by default, each SQL statement will
be executed as its own transaction. This is configured using the auto-commit value: when
auto-commit is set to true, each SQL statement executes in its own transaction; when
auto-commit is set to false, you can execute multiple SQL statements within a single
transaction. By default, any new connection to a DB auto-commit is set to true.

To group multiple statements into a single transaction in Java, you need to disable
setAutoCommit() (which implicitly starts a transaction), execute your statements, and finish
the transaction by either calling commit() or rollback():

// –--
// Surrounding each collection of SQL statements which
// constitute a single logical transaction:

// Disable the one-statement-per-transaction behavior:​
conn.setAutoCommit(false);
​
//
// ... execute your updates and queries ...
//​

// Decide what to do with your statements:​
conn.commit();​
// ~OR~​
conn.rollback();​

// Undo the changes to your transaction settings; future SQL
// statements will execute as individual transactions​
conn.setAutoCommit(true);

executeQuery() and executeUpdate() throw SQLExceptions if an error occurs;
determine if the error is transient (eg, deadlock) or permanent (eg, bad SQL syntax) and retry if
appropriate. The total amount of code to add transaction handling is quite small, but getting
everything to work harmoniously may take some time.

CSE 344 | 25wi | Introduction to Data Management

Milestone 1:

Prework
After reading through the requirements, you will translate the project requirements into a
conceptual model (an E/R diagram) and then to a schema (physical tables).

First, you will create an E/R diagram. The diagram should adequately represent (not necessarily
as their own entities) flights, carriers, months, weekdays, users, itineraries, and reservations.
You may omit some of flights’ attributes to keep your diagram small, if you wish.

Next, fill in the provided createTables.sql file with the necessary CREATE TABLE
statements to implement your E/R diagram. Recall that E/R diagrams may contain entities or
relationships which become columns rather than a table. Do not include statements for the
tables already in your database (ie, Flights, Carriers, Weekdays, or Months). To
prevent interference, we require that any table names in your createTables.sql be suffixed
with your UWNetID (eg, MyTable_hctang).

Java Customer Application
Your next task is to start writing the Java application that your customers will use. You will only
need to modify Query.java and PasswordUtils.java; do not modify FlightService.java.

Note: Use PreparedStatements appropriately (refer to section and lecture if you are
confused) when you execute queries that include user input. Dynamically-generated SQL
statements permit SQL injection attacks; don’t do this. We will deduct points if we see that
your code is susceptible to SQL injection.

Step 1: Implement clearTables()

Implement the clearTables() method in Query.java to clear the contents of any tables you
have created for this assignment (i.e., any tables in createTables.sql). Notably: do not
drop any of your tables, and do not modify the contents of or drop the
Flights/Months/Weekdays/Carriers tables.

clearTables() should not require more than a minute to run. This method is used for running
the test harness, where each test case assumes it has a clean database (i.e. with the FLIGHTS
table populated and createTables.sql called). An incorrect implementation will cause
difficult-to-debug test failures.

Step 2: Implement PasswordUtils.java

Implement salting and hashing by completing the three methods marked with TODO comments
in PasswordUtils.java. You will need this working before implementing the functions in
Query.java. You can test using mvn test -Dtest=flightapp.PasswordUtilsTest .

https://docs.oracle.com/en/java/javase/11/docs/api/java.sql/java/sql/PreparedStatement.html
https://en.wikipedia.org/wiki/SQL_injection

CSE 344 | 25wi | Introduction to Data Management

Step 3: Implement create, login, and search

Implement the create, login and search commands in Query.java (in that order). See
QueryAbstract.java for javadoc. mvn test should now pass the (non-transactional) test cases
which only involve these three commands:

mvn test -Dtest.cases="cases/no_transaction/search"​
mvn test -Dtest.cases="cases/no_transaction/login"​
mvn test -Dtest.cases="cases/no_transaction/create"

Or you can run all three cases using this single command:
mvn test
-Dtest.cases="cases/no_transaction/search:cases/no_transaction/l
ogin:cases/no_transaction/create"

If on Windows, you will need to quote the entire argument
to `mvn test` as follows:
$ mvn test "-Dtest.cases=folder_name_or_file_name_here"

You’ll need to change the quoting for all the `mvn test`
commands above, too.

Step 4: Write Test Cases

Write at least 1 new non-transactional test case for each of the three commands you just
implemented. Follow the same format as our provided test cases; you should copy our naming
convention (i.e. <cmdname>_<description>.test.txt) as well as the test case format.
Failure to match our naming convention will cause your tests to be miscategorized.

You may find the documentation on our test case format helpful.

M1 Submission
For this milestone, you should submit the following files to Gradescope:

●​ Your ER diagram
●​ createTables.sql
●​ Fully complete PasswordUtils.java
●​ Partially-complete Query.java with create, login and search commands

○​ Recall that we will not implement transaction handling until M2!
●​ At least 3 new test cases (one for each command)

CSE 344 | 25wi | Introduction to Data Management

Milestone 2:

Step 1: Implement book, pay, and reservations

Implement the book, pay, and reservations commands in Query.java. See
QueryAbstract.java for javadoc. At this point you have a fully-functional app! To verify, you can
run an entire directory’s worth of tests:

mvn test -Dtest.cases="cases/no_transaction/"

Step 2: Add transactions!

Unfortunately, you quickly notice problems when multiple users use your service concurrently:

mvn test -Dtest.cases="cases/transaction/"

You will need to add transactions to your application code, to ensure commands executing in
parallel do not conflict. Think carefully as to which commands need transaction handling.

Step 3: Write More (Transaction) Test Cases

Write at least 1 test case for each of the 3 new commands you just implemented. Follow the
same format as our provided test cases.

Next, write at least 1 parallel test case for each command except search and create (ie, you will
submit a total of 4 parallel tests). By "parallel", we mean (1) concurrent users interfacing with
your database, each in a separate application instance, and (2) multiple possible
outcomes/scenarios. As before, you may find documentation on our test case format helpful.

M2 Submission
For this milestone, you should submit these files to Gradescope:

●​ createTables.sql
●​ Your fully-complete Query.java and PasswordUtils.java
●​ At least 10 test cases, <command>_<description>.test.txt

○​ Please be sure they are named correctly
○​ 6 must be serial tests, one for each command. You can resubmit tests previously

submitted for M1.
○​ 4 must be parallel tests, one for each command except search and create

Please check that your submission is visible and autograder score is what you expected.

	Introduction
	Project Setup
	

	Project Requirements
	Data Model
	Application Logic
	Testing
	Transaction Management (M2 only)

	Milestone 1:
	Prework
	Java Customer Application
	Step 1: Implement clearTables()
	Step 2: Implement PasswordUtils.java
	
	Step 3: Implement create, login, and search
	Step 4: Write Test Cases

	M1 Submission

	Milestone 2:
	Step 1: Implement book, pay, and reservations
	Step 2: Add transactions!
	Unfortunately, you quickly notice problems when multiple users use your service concurrently:
	You will need to add transactions to your application code, to ensure commands executing in parallel do not conflict. Think carefully as to which commands need transaction handling.

	Step 3: Write More (Transaction) Test Cases
	M2 Submission

