
Guide

Purpose
Provides developers a guide on the steps needed to access and utilize the Nestre API,
for the purposes of making RESTFul API calls.

Prerequisite: Creating An Authorized API
Account

Many of the options in our API require signing in as an authorized user of the Nestre
app, which requires knowing your username and password used to create a new
user in the Nestre mobile app.

However, this also requires that your account was created from within a
‘Development’ build. The version of the app from the App Store is a “Production”
build, so the database of users on it is different, and those credentials won’t help you
authorize in our API.

You will need to follow the Nestre Frontend guide series up to the point where you can
deploy a developer build to either your Android or iOS device, and then from there
create an account from within the app.

Keep note of the username & password for this “Developer” mode user account. We
cover how to authorize your session in a section of this guide.

Alternatively, you can use our default Development username and password to test
this API, located later in this document.

Accessing the RESTful API
You can find the Nestre RESTful API at the link below.

Both options work the same, it’s a matter of preference on the style.

https://appservices.dev.nestreapp.com/docs - The ‘OpenAPI’ style

https://appservices.dev.nestreapp.com/redoc - The ‘Redoc’ style

For the purposes of this guide, we will assume you are using the ’OpenAPI’ style.

Logging Into the Nestre OpenAPI
In order to log in, you must first be invited by an administrator. This usually will be
sent during onboarding to your name@nestrehealthandperformance.com email
account.

You will have to change your password and enable a two-factor authorization to
gain full access after initial login.

If you are missing login information, contact your PM and/or Daniel from the Nestre
team to receive your credentials.

Navigating the OpenAPI
Once you have logged in, you are presented with a OpenAPI styled series of API calls,
here’s an overview of how they work.

https://appservices.dev.nestreapp.com/docs
https://appservices.dev.nestreapp.com/redoc

[Authorize 🔒] - Used to pass in an session token, authorizing you to use additional
API calls that are normally locked to non-authorized users.

[GET] - Returns data from the backend
[POST] - Creates data in the backend
[PATCH] - Updates data in the backend
[DELETE] - Deletes data in the backend

How To Authorize
Authorizing provides access to several API calls that are normally unavailable to
unauthorized users.

Authorization requires a valid session token, which we receive after logging in.

For the purposes of testing, you can sign in and get a session token from within our
OpenAPI.

Navigate to near the bottom of the OpenAPI page,
and find the [POST] /dev/app-user-cognito-login option.

Click on this method to expand it.

Click on the [‘Try It Out’] button.
Change the values of the username and password to match your account and press
[Execute] to continue.

After the API call succeeds, you can scroll down and see the response from the
server.

For the purposes of authorizing further API calls, you can copy+paste the
AccessToken variable in this response. This variable will need to be renewed after
the ExpiresIn variable reaches 0 (its in seconds, but usually this will last you at least 1
hour).

Now that you have the AccessToken in your clipboard, scroll back to the top and
click on the [Authorize 🔒] button.

Paste your AccessToken into the Value input field and click [Authorize 🔒].

And now your session while your viewing the API from this browser tab is authorized.
This allows you to execute most functions as its usually required.

When your working in the codebase, you have to do something similar to use the API,
first you sign in using a service, which sends you an AuthToken, and then you pass
that into the Nestre API before you start making requests.

Default Development Account Credentials
If you need a default set credentials, there should always be a default account
available to use within the Development server.

Feel free to directly copy+paste the JSON below to authenticate using the default
Development server account.

{​
 "username": "derrick@nestrehealthandperformance.com",​
 "password": "Nestre!@2025"​
}

And in case you need it during development, here’s this user’s unique identifier. Most

of our internal API tests will have this UID filled out already, but it’s here for you to

copy+paste as needed.

-​ UID: 4839e58f-9d9c-4065-a864-8da46121c174

What Is A RESTful API?
Think of a RESTful API as a a bridge to communicate between the backend and
frontend of our Nestre apps.

Using the example of a restaurant, our frontend is a customer, and our backend is
the cook. The RESTful API is the waiter.

Your HTTP requests are delivered to the backend, which is then returned with the
response data.

The HttpClient is used to ‘talk’ to the API, which involves making requests to specific
URLs (endpoints) using standard methods to perform actions.

Think of this as selecting your order from a menu, telling your waiter, who tells the
chef, and then returns with your food.

Communication Concepts
Continuing with our restaurant metaphor, our OpenAPI documentation outlines our
“menu”.

To communicate with our API from the frontend, we combine four key concepts.​

HTTP Method: The action you want to perform (e.g., GET, POST, PATCH, DELETE).
Endpoint: The URL for the specific resource you want to interact with.
Parameters: Identifiers or options you pass in the URL (e.g., {user_id}).
Body: The data payload you send to the API, usually in JSON format (for POST or
PATCH requests).

How To Communicate Using Angular’s
HttpClient

As a best practice, we use a dedicated service in Angular to handle our API calls. That
way our implementation details are handled in only one place and can be called
from anywhere in our application.

If your coming from a C-style language, think of this as a static singleton.

//#region IMPORTS

// src/app/services/api.service.ts​
import { Injectable } from '@angular/core';​
import { HttpClient } from '@angular/common/http';​
import { Observable } from 'rxjs';​

//#endregion

​

/**
 * Provides Nestre API access from anywhere in the application
 */
@Injectable({​
 providedIn: 'root'​
})​
export class ApiService

{

//#region PRIVATE - VARIABLES

​
 /**

 * base of our API URL, this should be pulled from an environment file

instead of being hardcoded

 */

 private baseUrl = 'https://api.project.com/v2';​

//#endregion

​
 constructor(private http: HttpClient) { }​

 /*

 * Returns a user profile

 * @param {string} userId - The id of the user.

 */

 //—--//

 getUserProfile(userId: string): Observable<any>

 //—--//

 {

 const url = `${this.baseUrl}/user/${userId}/profile`;

 return this.http.get(url);

 } //END getUserProfile Method

 /*

 * Creates a new user

 * @param {any} userData - The data of the new user.

 */

 //—--//

 createUser(userData: any): Observable<any>

 //—--//

 {​
 const url = `${this.baseUrl}/user`;​

 // userData is an object that matches the backend's expected schema​
 return this.http.post(url, userData);

​
 } //END createUser Method

 /*

 * Updates a user

 * @param {string} userId - The id of the user.

 * @param {any} updates - data object following the backends expected
schema
 */

 //—---//

 updateUser(userId: string, updates: any): Observable<any>

 //—---//

 {​
 const url = `${this.baseUrl}/user/${userId}`;​
 return this.http.patch(url, updates);

 } //END updateUser Method

 /*

 * Deletes a user

 * @param {string} userId - The id of the user

 */

 //—---//

 deleteUser(userId: string): Observable<any>

 //—---//

 {​
 const url = `${this.baseUrl}/user/${userId}`;​
 return this.http.delete(url);

 ​
 } //END deleteUser Method

} //END ApiService Class

And then we can use our ApiService in another Angular script…

// Within another Angular component

this.apiService.getUserProfile('some-user-123').subscribe

(

 profileData => { console.log('User Profile:', profileData); }

);

What's happening:

●​ We construct the full URL by inserting the userId.
●​ http.get(url) tells the "waiter" to fetch the data from that specific table

(URL).
●​ .subscribe() is how Angular handles asynchronous operations. It waits for

the data to come back from the server and then executes the code inside.

POST: Creating New Data 📝

POST requests are used to create a new resource.

●​ Example Endpoint: POST /v2/user
●​ Goal: Create a new user account.

POST requests almost always include a request body—the data for the new item. The
structure of this body is defined by the Schemas in your documentation (e.g.,
UserCreate).

// In your Angular component​
const newUser = {​
 email: 'test@example.com',​
 password: 'a-strong-password',​
 firstName: 'John',​
 // ... other fields defined in the UserCreate schema​
};​
​
this.apiService.createUser(newUser).subscribe(createdUser => {​
 console.log('Successfully created user:', createdUser);​
});

What's happening:

●​ We pass the newUser object as the second argument to http.post(). This is
the "order" you're giving the waiter. 📦

●​ The backend receives this object, creates the user in the database, and
typically returns the newly created user's data as a confirmation.

PATCH: Updating Existing Data

PATCH is used for making partial updates to an existing resource.

●​ Example Endpoint: PATCH /v2/user/{user_id}
●​ Goal: Update a specific user's information (e.g., their email).

Like POST, this uses a body, but it often only contains the fields that need changing. It
also requires a path parameter to know which user to update.

// In your Angular component​
const userUpdates = {​
 maritalStatus: 'Married' // We only want to change this one field​
};​
​
this.apiService.updateUser('some-user-123',

userUpdates).subscribe(updatedUser => {​
 console.log('Update successful:', updatedUser);​
});

DELETE: Removing Data

DELETE requests are used to remove a resource.

●​ Example Endpoint: DELETE /v2/user/{user_id}/frame/{frame_id}
●​ Goal: Delete a specific "frame" belonging to a user.

This often just requires an ID in the URL and doesn't need a body.

// In your Angular component​
this.apiService.deleteFrame('some-user-123', 'frame-abc-456').subscribe(()

=> {​
 console.log('Frame was successfully deleted.');​
 // The backend might return an empty response or a success message.​
});

Whitelisted Addresses ​
For Our Development Server

When testing API calls to our development server from a local project, oftentimes
you’ll test code that runs using a local live server plugin in VSCode, which avoids us
having to deploy our code to a server to test or use a tool like WebPack or Vite to
pass our API requests through a hosted server.

In order to make it past CORS and have your incoming request not blocked, you’ll
need to run your live server extension from one of the following ports.

ALLOWED_ORIGINS = [​
 "http://localhost:8100",​
 "http://localhost:8080",​
 "http://localhost:4200",​
 "http://localhost",​
 "https://localhost",​
 "capacitor://localhost",​
 "ionic://localhost",​
 "https://admin-dev.nestreapp.com",​
 "https://admin.nestreapp.com",​
]

Setting Up The Live Server Plugin In VSCode
In VSCode, go to the extensions marketplace, and search for and install the ‘Live
Server’ plugin from Ritwick Dey.

Now you can right click any HTML file and open it in a live server. The default port is
5500, which isn’t part of default whitelist the Nestre Backend allows. So we’ll need to
change the port number.

This is done from the Live Server extension page in the marketplace. To the right of
the [Uninstall] button is a settings gear icon ⚙️. Click it and open the plugin settings.

Scroll down until you see the Port setting

Click the edit button, then change it from ‘0’ to ‘8100’ so its one of our whitelisted

options and not random.

We also should change our host variable to localhost, that way our live server will
directly match our first whitelisted url origin from the list posted in the previous
section.
"http://localhost:8100"

Here’s the JSON snippet for you to copy+paste into your settings.json file
"liveServer.settings.host": "localhost",

"liveServer.settings.port": 8100

Also, if you for some reason can’t directly open the link to the settings.json file from
VSCode (this can happen due to permissions in Windows). You can always navigate
to the file directly to open it up for edit.

The file path is %APPDATA%/Code/User/settings.json
This usually translates to
C:/Users/<username>/AppData/Roaming/Code/User/settings.json

Save the settings.json file, and next time you launch the live server you’ll be using the
correct whitelisted port.

	Guide
	Purpose
	Prerequisite: Creating An Authorized API Account
	Accessing the RESTful API
	Logging Into the Nestre OpenAPI
	Navigating the OpenAPI
	How To Authorize
	Default Development Account Credentials
	What Is A RESTful API?
	Communication Concepts
	How To Communicate Using Angular’s HttpClient
	POST: Creating New Data 📝
	PATCH: Updating Existing Data
	DELETE: Removing Data
	Whitelisted Addresses ​For Our Development Server
	Setting Up The Live Server Plugin In VSCode

