
Pool Manager documentation
GitHub page

Pool Manager documentation 1
Introduction 1
Getting Started 3

Install the plugin in 4 steps 3
Setup the Pool Manager in 2 steps 4

Public Functions 5
Take From Pool 5
Take From Pool Array 7
Return To Pool 9
Return To Pool Array 10

Factories 11
What is Factory 11
Create new Factory 12

Sample Project 13
1. Blueprint Sample: widgets 13
2. Code Sample: Draw Boxes 13
3. Other Projects Examples 14

Cheats 14

Introduction
The Pool Manager helps reuse objects that show up often, instead of creating and
destroying them each time. Creating and destroying objects, like projectiles or
explosions, can be slow and cause issues such as making the game slow or laggy
when done frequently. The Pool Manager alleviates these problems by maintaining a
pool of objects. Instead of creating and destroying objects all the time, the Pool
Manager keeps these objects for reuse. This strategy improves the smoothness of the
game.

https://github.com/JanSeliv/PoolManager




Getting Started

Install the plugin in 4 steps
Step 1.
Download the plugin: https://github.com/JanSeliv/PoolManager

Step 2.
Create in your game project ‘Plugins’ folder and inside ‘PoolManager’ one

Step 3.
Extract downloaded files into Plugins -> PoolManager: `PoolManager.uplugin` has to
be located under next path:
YourGame\Plugins\PoolManager\PoolManager.uplugin

https://github.com/JanSeliv/PoolManager


Step 4.
Open your project,’Edit’ -> ‘Plugins’ window to make sure the ‘Pool Manager’ plugin is
enabled for your project:

Setup the Pool Manager in 2 steps
The Pool Manager is easy to use and doesn't need any in-engine setup. Just do these
two simple steps to start using its powerful features.

Step 1.
Call ‘Take From Pool’ whenever you need any object (or `Take From Pool Array` for
multiple objects):

See more detailed ‘Take From Pool’ section or view it in action in the Sample Project.

Step 2.
Call `Return To Pool whenever object is not needed anymore:

See more detailed in ‘Return To Pool’ section or view it in action in the Sample Project.



Public Functions
For a full list of all available functions, see `PoolManagerSubsystem.h`. All functions
are well-commented and should be clear even to those who do not understand the
code.

See functions in action in the Sample Project.

Take From Pool
The Take From Pool function efficiently retrieves objects from a pool based on the
specified class. This function is designed to operate asynchronously, meaning it returns
the object when it is ready, without blocking other processes.

Key Features
- If a free object is found in the pool, it is activated and returned immediately.
- If no free object is available, a new one is spawned asynchronously in the following
frames and then registered in the pool.
- In code, all functions additionally return a Handle: hash (ID) associated with the
object (but not the object itself). `ReturnToPool` by Handle is more reliable as it
handles even the case when the object is not spawned yet:
FPoolObjectHandle Handle = UPoolManagerSubsystem::Get().TakeFromPool(...);

Warnings and Notes:
- The speed at which new objects are created is influenced by the
'SpawnObjectsPerFrame' setting, which can be adjusted in 'Project Settings' ->
"Plugins" -> "Pool Manager".
- use `TakeFromPoolArray` instead of requesting one by one in for/while: 'Completed'
output does not work in loops.

Examples:

1. In blueprints:

2. Another blueprint example: look at Blueprint Sample: widgets, where
`WBP_Canvas` pools randomly up to 5 of `WBP_Text` subwidgets numerating
them.

https://github.com/JanSeliv/PoolManager/blob/main/Source/PoolManager/Public/PoolManagerSubsystem.h


3. In code without callback:
UPoolManagerSubsystem::Get().ReturnToPool(MyObjectPtr);

4. In code with callback:
const FOnSpawnCallback OnCompleted = [](const FPoolObjectData& CreatedObject)

{

CreatedObject.GetChecked<AMyActor>().OnMyActorTakenFromPool();

};

UPoolManagerSubsystem::Get().TakeFromPool(SomeBPClass, FTransform::Identity, OnCompleted);

5. Another code example: GeneratedMap.cpp in `SpawnActorByType` function.

https://github.com/JanSeliv/Bomber/blob/master/Source/Bomber/Private/GeneratedMap.cpp


Take From Pool Array
The Take From Pool Array functions extend the capabilities of the individual object
retrieval method by allowing multiple objects to be requested simultaneously.

Examples:

1. In blueprints:

2. Code example to take objects of the same class:
const FOnSpawnAllCallback OnCompleted = [](const TArray<FPoolObjectData>& CreatedObjects)

{

for (const FPoolObjectData& It : CreatedObjects)

{

It.GetChecked<AMyActor>().OnMyActorTakenFromPool();

}

};

TArray<FPoolObjectHandle> OutHandles;

UPoolManagerSubsystem::Get().TakeFromPoolArray(OutHandles, SomeBPClass,/*Amount*/5, OnCompleted);

3. Another code example of taking the same class: look at Code Sample: Draw
Boxes, where `SomeGameplayClass` infinitely pools randomly up to 50 Draw
Boxes at once each 0.2 seconds in random location on the level.

4. Code example to take objects from different classes:
TArray<FSpawnRequest> InRequests;

InRequests.Emplace(SomeBPClass);

InRequests.Emplace(MyWidgetClass);

InRequests.Emplace(MyGeometryClass);

FOnSpawnAllCallback OnCompleted = [](const TArray<FPoolObjectData>& CreatedObjects)

{

for (const FPoolObjectData& It: CreatedObjects)

{

// ...

}

};

TArray<FPoolObjectHandle> OutHandles;

UPoolManagerSubsystem::Get().TakeFromPoolArray(OutHandles, InRequests, OnCompleted);



5. Another code example of taking different classes: GeneratedMap.cpp in
`SpawnActorsByTypes` function. It forms requests of different Pools (bombs,
walls, boxes, items, players) calling TakeFromPoolArray only once.

https://github.com/JanSeliv/Bomber/blob/master/Source/Bomber/Private/GeneratedMap.cpp


Return To Pool
The `Return to Pool` function is an essential part of the pool management system,
designed to streamline the process of managing the lifecycle of pooled objects.

Key Features:
- Efficient Object Management: Enables objects taken from the pool to be returned
and automatically deactivated.
- Success Confirmation: Confirms a successful return to the pool with a `true` value,
or indicates failure with `false`.

Examples:

1. In Blueprints:

2. In code by object:
UPoolManagerSubsystem::Get().ReturnToPool(MyObjectPtr);

3. In code by Handle: an alternative for returning objects indirectly by their handle
(hash). It is more reliable as it handles even the case when the object is not
spawned yet:

UPoolManagerSubsystem::Get().ReturnToPool(Handle);



Return To Pool Array
The Return To Pool Array functions extend the capabilities of the standard Return to
Pool method by allowing multiple objects or handles to be returned to the pool
simultaneously.
Examples:

1. In Blueprints:

2. In code by object:
UPoolManagerSubsystem::Get().ReturnToPoolArray(MyObjects);

3. In code by Handle:
UPoolManagerSubsystem::Get().ReturnToPoolArray(Handles);



Factories

What is Factory
Default Classes that the Pool Manager supports out of the box:

- PoolFactory_UObject: is base class for all Factories. It handles all simple
UObjects. Simple means just regular UObjects, but not other engine classes
like Actors, Components, VFXs, Sounds etc.

- PoolFactory_Actor: handles all Actor-inherited objects.
- PoolFactory_UserWidget: handles all UserWidgets-inherited objects.

Implementing a new Factory is advantageous in next cases:
- Extending supported classes: If you wish to add support for pooling specific

elements beyond Default Classes. By creating new Factory, you can implement
support of anything like Components, VFXs, sounds, etc.
For such core Factories, your pull request is appreciated to be shared with
others.

- For your own gameplay objects like inventory object or trigger box actor to
handle pool-specific logic like give them call about any event happened (taken
from pool, returned etc).

The Factory architecture is as follows: our pooled object itself does not have any
dependencies on the Pool Manager system and doesn't even know about it, while its
Factory describes the logic of how to behave in Pool for this type of object and its
children when the object is being spawned, destroyed, pooled, taken etc.

Unlike other solutions, where an Interface is added to the class to override any
interface method, here you create a child factory to handle any custom pool-related
logic of handled class.



Create new Factory
Any factory can be created either in code or in blueprints.

Step 1
Create new code or blueprint class inherited from one of defaul Pool Factory
E.g: create PoolFactory_ActorComponent inherited from PoolFactory_UObject for
handling all Actor Components.

Step 2
Add new class to the 'Project Settings' -> "Plugins" -> "Pool Manager" -> "Pool
Factories":

Step 3
Override GetPoolObject function inside your new factor class: it should return the
class you want to handle, it could be some base class, so all its children also will be
handled by this Factory.
E.g: return UserWidget class for handling all widgets.

Step 4
Override any other method to handle custom logic. Calling Super inside for overridden
function is optional to keep original behavior.
E.g: for Actor Components, I assume you would override `OnTakeFromPool` to register
the component, change the Outer and enable ticking; override `OnReturnToPool` to
unregister the component and stop ticking.



Sample Project
Please download the sample project from the next link to see how it works, featuring
two examples in one project: first for blueprint-only developers pooling widgets and
another version implemented in code pooling Draw Boxes: they both perform exactly
the same logic, but for different object types.
https://github.com/JanSeliv/PoolManager/releases

1. Blueprint Sample: widgets

- WBP_Canvas: pools randomly up to 5 of WBP_Text subwidgets numerating
them, ‘TakeFromPoolArray’ and ‘ReturnToPoolArray’ are used.

2. Code Sample: Draw Boxes

In code, pooling Draw Boxes demonstrate pooling randomly up to 50 Draw Boxes with
the significant performance achieved by using a Pool Manager, with stable and high
FPS:

- `SomeGameplayClass` is actor that infinitely pools randomly up to 50 Draw
Boxes each 0.2 seconds in random location on the level. Instead of actual
spawning and destroying, ‘TakeFromPoolArray’ and ‘ReturnToPoolArray’
are used.

- `DrawBox` is our object we pool. It’s ticking to visualize red geometry box in
current location. It is regular object to make example more interesting using
next Factory. However, in real world, it would be just regular actor.

- `PoolFactory_DrawBox`: contains pooling-specific logic: resets location when
Draw Box is returned to pool. This factory is optional and regular Actor factory
can be used automatically by default.

https://github.com/JanSeliv/PoolManager/releases


3. Other Projects Examples
To view the Pool Manager in action, look at next projects searching by `TakeFromPool`
and `ReturnToPool:

- Bomber Project repository: GeneratedMap.cpp. Pooling all actors on level
(bombs, walls, boxes, items, players).

- Progression System plugin: PSMenuWidget.cpp. Pooling ‘Star’ widgets to
display progression scores.

Cheats
At this moment, the Pool Manager does not provide its own cheats or debug
visualizations. However, you can find useful built-in Engine cheats. All the following
cheats help to track the amount of created objects.

Displays all stored objects in all pools:
- DisplayAll PoolManagerSubsystem PoolsInternal

Displays how many objects the engine created of a given code class. The name of the
class should be without any prefix. For example, to display all objects of ‘UDrawBox’, it
would look as follows:

- DisplayAll DrawBox

Displays all objects ever created in the Engine (even those that are not pooled):
- stat UObjects

https://github.com/JanSeliv/Bomber/blob/master/Source/Bomber/Private/GeneratedMap.cpp
https://github.com/h4rdmol/ProgressionSystem/blob/develop/Source/ProgressionSystemRuntime/Private/Widgets/PSMenuWidget.cpp

