R23 II B. Tech II Semester Regular Examinations, May/June - 2025
DATA BASE MANAGEMENT SYSTEMS
(Common to CSE, CSE (AIML, CS, DS), AL IT)
Time: 3 hours MODEL QUESTION PAPER Max. Marks: 70

__|
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FIVE Questions from Part-B

PART - A
1. A) List any two differences between a database and a file system. (10X2=20M)
B) Mention two types of attributes in ER diagrams.
C) Define integrity constraints with examples.
D) What is the purpose of the ALTER TABLE command?
E) Write a basic SQL query using the SELECT and WHERE clauses
F) List two numeric functions available in SQL.
G) Define the Normalization?
H) List three advantages of normal forms.
I) Write the need of serializability in transaction management.
J) Differentiate primary index from secondary index.

PART - B
2. A) Explain the architecture of DBMS with a neat sketch. [10M]
Or
B) Compare and contrast various Data Models. [5M]
C) Explain the Generalization and Specialization with suitable ER Modeling. [SM]
3. A) Consider the Bank Management System. [10M]]

account (account number, branch name, balance)

branch (branch name, branch_city, assets)

customer (customer name customer_street, customer_city)
loan (loan_number, branch name, amount)

depositor ((customer_name, account_number)

borrower (customer_name, loan_number)

Answer the following queries using SQL Statements

1. List all branch names and their assests

2. List all accounts of Brooklyn branch

3. List all loans with amount > 1000.

4. List all accounts of Perryridge branch with balance < 1000.
5. List Numbers of accounts with balances between 700 and 900

OR
B) Explain the relational algebra opertions with suitable examples. [10M]

4.A) Explain the different Date,Numeric and String function with an example.
[10M]
OR
B) Define the Join in SQL? And explain the types of joins with syntax and example.
[SM]
C)Define the View in SQL? And explain the types of joins with syntax and example.
[SM]

5.A) Define the Normalization and Explain the different normal forms?
[10M]
OR
B) Elaborate the importance of computing closure of functional dependencies.

1

Explain the procedure with an example. [10M]

6.A) Define the transaction? Explain the properties of transactions. [SM]
B) Discuss about view serializability. [5SM]
OR
C)Define the B+ Tree, discuss characteristics and operations supported by B+ Tree with
suitable example. [10M]
Answers

1. A) List any two differences between a database and a file system.
Ans)Data Management and Querying:
e File System: Stores data in files and folders; retrieval requires manual
parsing and handling by custom programs.
e Database: Manages data using structured query languages (like SQL),
supporting efficient searching, filtering, and relationships between data.
Data Integrity and Security:
e File System: Limited mechanisms for ensuring data integrity and access
control.
e Database: Enforces constraints (like primary keys, foreign keys) and
supports fine-grained access control and transaction management to
ensure data consistency and security.

B) Mention two types of attributes in ER diagrams.

Ans) There are different types of attributes as discussed below-
Simple Attribute

Composite Attribute

Single-Valued Attribute

Multi-Valued Attribute

Derived Attribute

Complex Attribute

Stored Attribute

Key Attribute

Null Attribute

C) Define integrity constraints with examples.
Ans) The following constraints are commonly used in SQL:
1. NOT NULL - Ensures that a column cannot have a NULL value
2. UNIQUE - Ensures that all values in a column are different
3. PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely identifies
each row in a table
4. FOREIGN KEY - Prevents actions that would destroy links between tables
5. CHECK - Ensures that the values in a column satisfies a specific condition
6. DEFAULT - Sets a default value for a column if no value is specified

D)) What is the purpose of the ALTER TABLE command?
Ans) The ALTER TABLE command in SQL is used to modify the structure of
an existing table in a database.
1.Adding a new column
SQL> Alter table table name add (new column datatype);

2

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp

2.Modifying an existing column

SQL> Alter table table name modify (old column datatype(size));
3. Deleting a column

SQL> Alter table table name drop column column name;

E) Write a basic SQL query using the SELECT and WHERE clauses.

Ans) The SELECT statement in SQL is used to retrieve data from one or more
tables in a database

Ans) SQL>select column_list from table name where(condition);

F) List two numeric functions available in SQL.

Ans) 1)ABS(number) :- Returns the absolute value of a number.
SQL>SELECT ABS(-11) FROM dual;

2) CEIL(number) or CEILING(number) — Rounds a number up to the

nearest integer.

SQL>SELECT ceil(5.67),floor(5.67) FROM dual;
3)POWER(x, y) — Returns x raised to the power of y.

SQL>SELECT power(3,2) FROM dual;

G) Define the Normalization?

Ans) Normalization, in the context of databases, is the process of organizing
data to reduce redundancy and improve data integrity by breaking down large
tables into smaller, more manageable tables and establishing relationships
between them. This process helps minimize update, insertion, and deletion
anomalies, making the database more flexible and consistent.

H) List out the advantages of normal forms.
Ans) 1. Reduced Data Redundancy:
e Normalization minimizes the storage of duplicate data by storing each piece of
information only once.
e This reduces storage space and improves efficiency.
e Updates only need to be made in one place, reducing the risk of inconsistencies.
2. Improved Data Integrity:
e Normalization enforces rules and constraints, ensuring data accuracy and consistency.
e [t eliminates anomalies like update, insertion, and deletion anomalies, which can lead
to data inconsistencies.
e Data is organized in a structured manner, making it easier to manage and maintain.
3. Enhanced Database Performance:
e Normalization optimizes database storage and reduces the need for full-table scans.
e This leads to faster query execution and improved overall database performance.
e It also simplifies database design and makes it easier to maintain and update.
4. Easier Maintenance and Management:
e A well-normalized database is easier to understand and maintain.
e Updates, insertions, and deletions are simplified, reducing the risk of errors.
e Data is more organized and consistent, making it easier to troubleshoot problems.
S. Improved Security:
e Normalization can help enforce access control and security measures.
e By limiting access to specific tables, it can enhance data security.
6. Enhanced Scalability and Flexibility:

e A normalized database can be more easily scaled to accommodate growing data
volumes.
e [t is also more flexible and can be adapted to changing business needs.

I) Write the need of serializability in transaction management.

Ans) Serializability is essential in transaction management to ensure the
correctness and consistency of the database when multiple
transactions are executed concurrently. It guarantees that the outcome
of executing multiple transactions concurrently is the same as if the
transactions were executed one after another in some serial order.
Here's why it is needed:

1. Maintains Database Consistency: Ensures that concurrent transactions
do not violate the consistency constraints of the database.

2. Avoids Anomalies: Prevents concurrency-related issues such as lost
updates, temporary inconsistency, and uncommitted data being read (dirty
reads).

3. Preserves Isolation: Serializability upholds the isolation property of
ACID (Atomicity, Consistency, Isolation, Durability), ensuring each
transaction appears isolated from others.

4. Predictable Results: Enables predictable and reproducible outcomes,
critical for applications where data integrity is crucial.

J) Differentiate primary index from secondary index.

Ans)
Feature Primary Index Secondary Index
An index based on the An index based on non-primary
Definition primary key of a key (non-unique)
table. fields.
Always unique (no
Uniqueness duplicate values = May contain duplicate values.
allowed).
. Data records are physically Does not affect the physical
Ordering ordered based on
it order of records.
Number per Only one primary index per Multiple secondary indexes can
Table table. exist.
Access Efficiency Typically faster for primary May be slower, espema}ly with
key lookups. duplicate entries.
Implementation Often 1mplement.ed as a Typically 1mplerfiented as a
sparse index. dense index.
Use Case Used whenrsii;ihlrll{ge WIS Used for queries on non-key
P yRey attributes.
values.

2.A) Explain the architecture of DBMS with a neat sketch.

Ans) Database System Architecture

The typical structure of DBMS is based on Relational data model.

The top part of the architecture shows application interfaces used by naive users,
application programs created by application programmers, query tools used by
sophisticated users and administration tools used by database administrator.

The lowest part of the architecture is for disk storage.

The Middle two parts(Query processor and storage manager) are important
components of database architecture.

o —~
Application Sophlstlcated Database
Naive Users Programmer Users Administrator

Application Application Query Administration)

Interfaces Programs Tools Tools

Compiler & Linker DML Queries | I DDL Interpreters I
- v
Application Program DML Compiler &

Query Evaluation
L Engine <

.
L
.
.
.
H
.
H Object Code Organizer
:
.
.
:
L)

Buffer File Authorization & Transaction
Manager Manager Integrity Manager Manager

Drsk 52'0/179/3

I Data Dictionary I | Statistical Data

The interactive query processor helps the database system to simplify and facilitate
access to data. It consists of DDL(Data Definition Language) interpreter, DML(Data
Manipulation Language) compiler and query evaluation engine.
The following are various functionalities and components of query processor
e DDL interpreter: This is basically a translator which interprets the DDL
statements in data dictionaries.

e DML compiler: It translates DML statements query language into an
evaluation plan. This plan consists of the instructions which query evaluation
engine understands.

e Query evaluation engine: It executes the low-level instructions generated by
the DML compiler.

When a user issues a query, the parsed query is presented to a query optimizer, which
uses information about how the data is stored to produce an efficient execution plan
for evaluating the query. An execution plan is a blueprint for evaluating a query. It is
evaluated by query evaluation engine.

In database architecture, the Query Processor is responsible for interpreting and
executing database queries. It acts as a bridge between the user’s query and the
database engine, ensuring that the query is understood, optimized, and executed
efficiently. The main components of a Query Processor are:

5

1. DML Compiler (Data Manipulation Language Compiler)
e Function: Translates high-level queries (like SQL) into a lower-level language
that the database engine can understand.

® Process: Checks for syntactic and semantic correctness before translating the
query into an internal form, such as a query tree or query graph.

2. Query Parser
e Function: Parses the query to check for syntax errors and to verify the query
structure.

e Process:
o Syntax Analysis: Ensures the query follows the grammatical rules of
the query language.
o Semantic Analysis: Checks for logical errors, such as verifying if the

specified tables and columns exist.

3. Query Optimizer
e Function: Optimizes the query by finding the most efficient execution plan.

e Process:
o Evaluates different query execution plans.
o Considers factors like indexing, join methods, and data distribution.

o Chooses the optimal plan based on cost estimation (e.g., CPU usage,
memory, and I/O operations).

4. Query Plan Generator
e Function: Generates a sequence of operations to execute the query.

® Process: Converts the optimized query into a sequence of low-level
instructions that the query executor can understand.

5. Query Executor : Executes the query plan and retrieves the required data.
o Process: Performs operations like scanning, joining, sorting, and

filtering.
o Communicates with the storage engine to access or update the data.

6. Runtime Database Manager : Coordinates between the query executor and the
storage manager.
e Process: Ensures data integrity and consistency during the query execution
process.

In database architecture, the Storage Manager is responsible for handling the
storage, retrieval, and update of data in the database. It acts as an interface between
the low-level data stored on physical storage devices and the higher-level query
processor components. Its primary role is to efficiently manage data storage, access,
and integrity.

2.B) Compare and contrast various Data Models.
In order to define the connections, organization, and structure of data in a database
management system (DBMS), data models are essential. The effectiveness of a
database’s ability to store, retrieve, and alter data is greatly influenced by the choice of
data model. The Hierarchical, Network, and Relational models are some of the oldest
types of data models; each has special traits and applications
What is a Hierarchical Data Model?
The hierarchical data model is the oldest type of the data model. It was developed by
IBM in 1968. It organizes data in a tree-like structure. Hierarchical model consists of
the following :

e [t contains nodes which are connected by branches.

e The topmost node is called the root node.

e If there are multiple nodes appear at the top level, then these can be called root

segments.
e FEach node has exactly one parent.
e One parent may have many children.

Electronics

v 1

Televisions F-::-rtablle
‘ Electronics
Tube LCD Plasma MP3 cD 2 way
Players Players Radios
FLASH

In the above figure, Electronics is the root node which has two children i.e. Televisions
and Portable Electronics. These two has further children for which they act as parent.
For example: Television has children as Tube, LCD and Plasma, for these three
Television act as parent. It follows one to many relationship.
Advantages of the Hierarchical Data Model

e Because of its tree form, it is easy to grasp.

e Retrieving data in a one-to-many connection is efficient.
Disadvantages of the Hierarchical Data Model

e Inflexibility in reorganizing data.

e accessing complicated data structures may be challenging.

e redundant data storage, which might cause anomalies and inconsistencies.

What is a Network Data Model?

It is the advance version of the hierarchical data model. To organize data it uses
directed graphs instead of the tree-structure. In this child can have more than one
parent. It uses the concept of the two data structures i.e. Records and Sets.

https://www.geeksforgeeks.org/data-models-in-dbms/

Project

—

Project 1 Project 2

— .

Department A Department B Department C

In the above figure, Project is the root node which has two children i.e. Project 1 and
Project 2. Project 1 has 3 children and Project 2 has 2 children. Total there are 5
children i.e Department A, Department B and Department C, they are network related
children as we said that this model can have more than one parent. So, for the
Department B and Department C have two parents i.e. Project 1 and Project 2.
Advantages of the Network Data Model

e Because of its numerous parent ties, it is more adaptable than the hierarchical

approach.

e Ideal for managing intricate, many-to-many connections.
Disadvantages of the Network Data Model

e Increased complexity in database design and management.

e requires complex programming in order to manage and work with data.
What is a Relational Data Model?
The relational data model was developed by E.F. Codd in 1970. There are no physical
links as they are in the hierarchical data model. Following are the properties of the
relational data model :

e Data is represented in the form of table only.

e [t deals only with the data not with the physical structure.

e [t provides information regarding metadata.

e At the intersection of row and column there will be only one value for the

tuple.
e [t provides a way to handle the queries with ease.

Columns or Fields or Attributes Domail@
v w h 4 W h 4

P"Ii("gsr!l' — stu_ID | S_Name S_Address Birthdate Sex
A
—» 121 Anita 41, Kendy Av. | 15-07-1981 F
Rows - 'E'.._
: —> 122 Dravid 22, Basant Awv. 23-06-1980 Ml = © o
Records £ 5 E
or s = e
Tuples |[—»| 125 Shanu | 120 sfd';homas 19-09-1982 F S
] 131 Atul 58, Lwr.Rd. 27-08-1978 M 1

(ﬂ— Degree (No. of Columns) >

Data Values
Advantages of the Relational Data Model
e High data independence and flexibility.
e offers robust and user-friendly querying features.
e removes duplication by use of normalization.
Disadvantages of the Relational Data Model
e For certain kinds of straightforward data retrieval tasks, they may not perform

8

as well as hierarchical models.
e demands a deeper comprehension of SQL and normalization principles.

2.C) Explain the Generalization and Specialization with suitable ER Modeling.
Ans) Generalization

Generalization is the process of extracting common properties from a set of entities and
creating a generalized entity from it. It is a bottom-up approach in which two or more entities
can be generalized to a higher-level entity if they have some attributes in common. For
Example, STUDENT and FACULTY can be generalized to a higher-level entity called
PERSON as shown in Figure 1. In this case, common attributes like P NAME, and P_ADD
become part of a higher entity (PERSON), and specialized attributes like S FEE become part
of a specialized entity (STUDENT).

Generalization is also called as ¢ Bottom-up approach”.

AN A A = e el T

EMPLOYEE

higher
ity ,So
rribute

‘0 the
) to a
pation
ierited
would
Specialization pation

iy Uiy ivavau wu sav s aseniesy Us pasasapssauss vusossses aue aae actual

relationships between entities.

https://www.geeksforgeeks.org/difference-between-entity-and-object/
https://www.geeksforgeeks.org/types-of-attributes-in-er-model/
https://www.geeksforgeeks.org/difference-between-entity-entity-set-and-entity-type/

Vehicle Cycle

1S-A
Car Bus
Example of Relation

Aggregation

An ER diagram is not capable of representing the relationship between an entity and a
relationship which may be required in some scenarios. In those cases, a relationship
with its corresponding entities is aggregated into a higher-level entity. Aggregation is
an abstraction through which we can represent relationships as higher-level entity sets.
For Example, an Employee working on a project may require some machinery. So,
REQUIRE relationship is needed between the relationship WORKS FOR and entity
MACHINERY. Using aggregation, WORKS FOR relationship with its entities
EMPLOYEE and PROJECT is aggregated into a single entity and relationship
REQUIRE is created between the aggregated entity and MACHINERY.

PROJECT EMPLOYEE

3.A)

MACHINERY

Aggregation

1.List all branch names and their assests2.
2.List all accounts of Brooklyn branch
3.List all loans with amount > 1000.
4.List all accounts of Perryridge branch with balance < 1000.
5.List Numbers of accounts with balances between 700 and 900
Ans) 1. List all branch names and their assets:
SQL> SELECT branch_name, assets FROM branch;
2. List all accounts of Brooklyn branch:
SQL>SELECT account number, branch name, balance
FROM account
WHERE branch_name= 'Brooklyn';
3. List all loans with amount > 1000:
SQL>SELECT loan_number, branch_name, amount FROM loan
WHERE amount > 1000;
4. List all accounts of Perryridge branch with balance < 1000:
SQL>SELECT account number, branch name, balance FROM account

10

WHERE branch_name = 'Perryridge' AND balance < 1000;
5. List numbers of accounts with balances between 700 and 900:
SQL>SELECT account number FROM account
WHERE balance BETWEEN 700 AND 900;

3.B) Explain the relational algebra opertions with suitable examples.
Ans) Relational Algebra is a procedural query language used in relational databases. It
provides a set of operations to manipulate and retrieve data from relational tables.
Types of Relational Algebra Operators
Relational Algebra has two main types of operators:
1. Set Operators — Perform operations on sets of tuples (rows).

2. Relational Operators — Operate on relations (tables) to filter or combine data.

a) Selection (o) — Filters Rows
e Selects rows (tuples) that satisfy a given condition.

e Equivalent to WHERE in SQL.

Notation: ccondition(Relation)o {condition} (Relation)ccondition(Relation)
Example: Find employees with a salary greater than 50000.
Ex : osalary>50000(Employees)
b) Projection () — Selects Columns
e Sclects specific columns (attributes) from a table.

e Equivalent to SELECT column_names in SQL.

Notation: ncolumnl,column2,...(Relation)
Example: Get only employee names and salaries.
Ex : mempname,salary(Employees)

¢) Cartesian Product (X) — Combines Relations
e (Combines each row of one relation with every row of another.

e Forms the basis for JOIN operations in SQL.

Notation: RelationlxRelation2
Example: Get all possible pairs of employees and departments.
Ex: EmployeesxDepartments

d) Union (V) — Combines Tuples from Two Relations
e Combines two tables with same attributes and removes duplicates.

e Equivalent to UNION in SQL.

Notation: Relation1 URelation2

Example: Get a list of all employees and managers.

Ex : EmployeesUManagers

e) Set Difference (—) — Finds Tuples in One Relation but Not in Another
e Retrieves rows in one table that do not exist in another.

e Equivalent to MINUS in Oracle SQL.

Notation: Relation]1—Relation2

Example: Find employees who are not managers.

Ex : Employees—Managers

f) Intersection (N) — Finds Common Tuples Between Relations
e Retrieves only the common rows between two tables.

11

e Equivalent to INTERSECT in SQL.

Notation: Relation] NRelation2
Example: Find employees who are also managers.
EmployeesNManagers
2. Joins in Relational Algebra
Joins are special types of Cartesian Product used to combine related tables.
a) Natural Join (M) — Combines Related Tables Automatically
e Joins tables based on common attributes (column names and values).

e Equivalent to NATURAL JOIN in SQL.

Notation: Relation]Relation2
Example: Combine employees with their department information.
Ex : EmployeesxDepartments

b) Theta Join (x0) — Joins Tables with a Condition
e Joins tables based on a specified condition (0).

e Equivalent to INNER JOIN in SQL.

Notation:Relation1 .. Relation2
Example: Join employees and departments where dept_id matches.

Emp loyees X Employees.deptid:Departments.deptidDepartmentsEmp loyees
¢) Left Outer Join (>4) — Keeps All Left Table Rows

e Returns all rows from the left table and matching rows from the right table.

Notation: Relation]1>Relation2
d) Right Outer Join (><) — Keeps All Right Table Rows
e Returns all rows from the right table and matching rows from the left table.

Notation: Relation1><tRelation2
e) Full Outer Join (<) — Keeps All Rows from Both Tables
o Returns all rows when there is a match, and NULLs where there is no match.

Notation: Relation1><Relation2

4.A) Explain the different Date,Numeric and String function with an example.
Dual Table :- Dual table is a dummy table, It having only one row and one
column, Value of the dual table is ‘x’ . By using dual table we can perform
arithmetic Operations and can use date retrieval functions.
A) Date Functions:- SQL supports the following date functions.
1) sysdate :- sysdate returns the today’s sys date value.
Syntax : SQL> select sysdate from dual;

SYSDATE

28-FEB-25
2)sysdate + Number :- it returns the date value after adding some number of
days.
SQL> select sysdate,sysdate+90 from dual;

SYSDATE SYSDATE+9

28-FEB-25 29-MAY-25

12

3)last_day(date) :- It returns the last day of the month.
SQL> select sysdate,last day(sysdate) from dual;
SYSDATE LAST DAY
28-FEB-25 28-FEB-25
4)next_day(date):- It returns next date value by passing next day value.

SQL> select sysdate,next _day(sysdate,'Friday') from dual;

SYSDATE NEXT DAY

28-FEB-25 07-MAR-25
S)months_between(Datel,Date2):- It returns number of months between the
two dates.
SQL> select months between(sysdate,'28-Feb-24") from dual;

MONTHS BETWEEN(SYSDATE,'28-FEB-24")
12
B)Numeric Functions :-
1)abs(value):- It returns the absolute value.
SQL> SQL> select abs(-11), abs(12) from dual;
ABS(-11) ABS(12)

2)mod(m,n):- It calculate mod value that is remainder value passed by the
function.

SQL> select mod(20,3) from dual;

MOD(20,3)

3)power(m,n):-It calculates power of a number.
SQL> select power(3,2) from dual;
POWER(3,2)

4)ceil(value):- It returns the ceil value passed by the function.
S5)floor(value):- It returns the floor value passed by the function.
SQL> select ceil(5.67), floor(5.67) from dual;
CEIL(5.67) FLOOR(5.67)
6 5
6)tan(value):- It calculate trigonometric value pass by the function. It calculate
radians value.
SQL> select tan(45) from dual;
TAN(45)
13

1.61977519
7)sqrt(value):- It calculate the square root of a number.
SQL> select sqrt(25) from dual;
SQRT(25)

8) SQL> select least(11,22),greatest(11,22) from dual;

LEAST(11,22) GREATEST(11,22)

C)String Functions :-

DInitCap(‘String’):- The InitCap() function in SQL is used to capitalize the
first letter of each word in a string while converting the rest of the letters to
lowercase.

SQL> select InitCap(‘'my name is naresh') from dual;
INITCAP('MYNAMEIS

My Name Is Naresh
2)Length(‘String’):- The LENGTH() function in SQL is used to return the
number of characters in a string.

SQL> select length('Srinivas') from dual;
LENGTH('SRINIVAS")

3)upper(‘String’):- The UPPER() function in SQL converts all characters in a
given string to uppercase. It is useful for case-insensitive comparisons and
formatting text data.
SQL> select upper('srinivasarao') from dual;

UPPER

SRINIVASARAO
4)lower(‘String’):- The LOWER() function in SQL converts all characters in a given string
to lowercase. It is useful for case-insensitive comparisons and standardizing text data.
SQL> select lower('NARESH") from dual;

LOWER

naresh

5)substr(‘String’,starting character number,number of characters):- The
SUBSTR() function in SQL extracts a portion of a string based on a specified
starting position and length. It is commonly used for string manipulation.

SQL> select substr('SRINIVAS'.4,5) from dual;

SUBST

NIVAS
6)Itrim(‘String’,Number of characters in a string’,’special character’):- The
LTRIM() function in SQL removes leading spaces (spaces from the left) from a

14

string. It is useful for cleaning up text data before processing or comparison.
SQL> select LTRIM(' S RINIVAS') from dual;

LTRIM

S RINIVAS
Drtrim(‘String’ Number of characters in a string’,’special character’):- The
RTRIM() function in SQL removes trailing spaces (spaces from the right) from
a string. It is useful for cleaning up text data before processing or comparison.
SQL> select RTRIM('SRINIVAS ') from dual;

RTRIM

SRINIVAS
8)concat(‘String1’,’String2’):- The CONCAT() function in SQL is used to
combine two or more strings into one. It is useful for merging text values in
queries.
SQL> select concat('Soft','Ware') from dual;

CONCAT

SoftWare
9)trim(‘String’):- The TRIM() function in SQL removes leading, trailing, or
both leading and trailing spaces (or other specified characters) from a string. It
is useful for cleaning up text data.

SQL> select trim(' srinivasa rao ') from dual;
TRIM

srinivasa rao

10)ASCII(‘character’):- The ASCII() function in SQL returns the ASCII
(American Standard Code for Information Interchange) value of the first
character in a given string. It is useful for checking character codes, sorting, and
data validation.
SQL> select ASCII('A") , ASCII('a") from dual;

ASCII('A") ASCII('A")

65 97

11)Replace(‘String’,Replaced character’,Replacing Characters’):- The
REPLACE() function in SQL is used to replace all occurrences of a specified
substring within a string with another substring. It is useful for modifying text
data, cleaning up strings, or standardizing values.
SQL> select Replace('Back’,'B','Bl') from dual;

REPLA

Black
12)Lpad():-The LPAD() function in SQL is used to left-pad a string with a
specified character until it reaches a certain length. It is useful for formatting

15

text, aligning values, and ensuring fixed-length outputs.

13)Rpad():-The RPAD() function in SQL is used to right-pad a string with a
specified character until it reaches a certain length. It is useful for formatting text,
ensuring fixed-length values, and aligning data.

SQL> select LPAD('SRINIVAS',12,"*"),RPAD('SRINIVAS',12,"*") from dual,

LPAD RPAD

HxESRINIVAS SRINIVAS##:*
4.B) Define the Join in SQL? And explain the types of joins with syntax and example.

Ans) Ans) A JOIN clause is used to combine rows from two or more tables,

based on a related column between them. SQL Supports the following jojns.

1)CROSS JOIN :- A cross join is a type of join that returns the Cartesian

product of rows from the tables in the join. In other words, it combines each row

from the first table with each row from the second table.

Syntax :

SQL> Select tablel.columnl,tablel.column2, table2.columnl, table2.column?2
from tablel,table2;

2)EQUI JOIN:- Returns records that have matching values in both tables
Syntax :
SQL> Select tablel.columnl,tablel.column2, table2.columnl,
table2.column2 from tablel,table2
where tablel.column= tablel.column;

3.A)LEFT (OUTER) JOIN: Returns all records from the left table, and the
matched records from the right table
Syntax :
SQL> Select tablel.columnl,tablel.column2, table2.columnl,
table2.column2 from tablel,table2
where tablel.column= tablel.column(+);
3.B)RIGHT (OUTER) JOIN: Returns all records from the right table, and the
matched records from the left table.
Syntax :
SQL> Select tablel.columnl,tablel.column2, table2.columnl,
table2.column2 from tablel,table2
where tablel.column(+)= tablel.column;
3.0O)FULL (OUTER) JOIN:- Returns all records when there is a match in
either left or right table
Syntax :
SQL> Select tablel.columnl,tablel.column2, table2.columnl,
table2.column2 from tablel,table2
where tablel.column= tablel.column(+)
Union
Select table1.columnl,tablel.column2, table2.columnl,
table2.column2 from tablel,table2

16

where tablel.column(+)= tablel.column;
4)Self Join :-A self join is a type of join operation in a relational database
where a table is joined with itself. It allows you to combine rows from the same
table based on a related condition.
Syntax :
SQL>SELECT column name(s) FROM tablel TI, tablel T2
WHERE condition;

5.A) Define the Normalization and Explain the different normal forms?
Ans) Types of Normal Forms
First Normal Form (1NF): This is the most basic level of normalization. In INF,
each table cell should contain only a single value, and each column should have a
unique name.
1)Data Must be in a Tabular form
2) Intersection of row and column should have atomic value.

Student Number | SName Address Courses
1 Naresh NRT C, C++, JAVA
2 Suresh Guntur Oracle, MySQL
Fig: Unnormalized Relation
Student Number | SName Address Courses
1 Naresh NRT C
1 Naresh NRT C++
1 Naresh NRT JAVA
2 Suresh Guntur Oracle
2 Suresh Guntur MySQL

Fig : First Normal Form

Second Normal Form (2NF): 2NF eliminates redundant data by requiring that each
non-key attribute be dependent on the primary key. This means that each column
should be directly related to the primary key, and not to other columns.

1)Data Must be in a Tabular form

2)It Should be in First Normal Form

3)It Removes Partial Function Dependencies

EmpNo EName DOJ Deptno DName Location
1 Naresh 10-Jan-25 | 10 CSE Bangalore
2 Suresh 20-Jan-25 10 CSE Bangalore
3 Ramesh 25-Jan-25 |20 ECE HYD
4 Mahesh 30-Jan-25 |20 ECE HYD
Fig : First Normal Form
EmpNo | EName DOIJ Deptno
1 Naresh | 10-Jan-25 10
2 Suresh | P0-Jan-25 10
3 Ramesh | P5-Jan-25 20
4 Mahesh | B0-Jan-25 20
Deptn | DName | Location
0
10 CSE Bangalore

17

20 ECE HYD

Fig : Second Normal Form

Third Normal Form (3NF): 3NF builds on 2NF by requiring that all non-key
attributes are independent of each other. This means that each column should be
directly related to the primary key, and not to any other columns in the same table.
1)Data Must be in a Tabular form

2)It Should be in Second Normal Form

3)It Removes Transitive Function Dependencies

StudentID | SName
1 Naresh
2 Suresh

PINCode | Name of the Town
Java 522 601 | Narasaraopet
Oracle | 500 001 | Hyderabad

Fig : Second Normal Form

Course

StudentID

SName

Course

PINCode

1

Naresh

Java

522 601

2

Suresh

Oracle

500 001

PINCode | Name of the Town
522 601 | Narasaraopet
500 001 | Hyderabad

Fig : Third Normal Form

Boyce-Codd Normal Form (BCNF): BCNF is a stricter form of 3NF that ensures
that each determinant in a table is a candidate key. In other words, BCNF ensures that
each non-key attribute is dependent only on the candidate key.
For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the following
two conditions:

1. It should be in the Third Normal Form.

2. for any dependency A — B, A should be a super key.

The second point sounds a bit tricky, right? In simple words, it means, that for a
dependency A — B, A cannot be a non-prime attribute, if B is a prime attribute.
Below we have a college enrolment table with columns student id,subject and
Professor.

student id subject professor
101 Java Naresh
101 C++ Suresh
102 Java Mahesh
103 C# Rajesh
104 Java Ramesh

18

In the table above:
e One student can enrol for multiple subjects. For example, student
with student_id 101, has opted for subjects - Java & C++

e FEach subject, a professor is assigned to the student.

e And, there can be multiple professors teaching one subject like we have for
Java.

What do you think should be the Primary Key?

Well, in the table above student id, subject together form the primary key, because
using student id and subject, we can find all the columns of the table.

One more important point to note here is, one professor teaches only one subject, but
one subject may have two different professors.

Hence, there is a dependency between subject and professor here,

where subject depends on the professor name.

Fourth Normal Form (4NF): 4NF is a further refinement of BCNF that ensures that
a table does not contain any multi-valued dependencies.

A database table is in Fourth Normal Form (4NF) if it's in Boyce-Codd Normal Form
(BCNF) and has no multivalued dependencies (MVDs) that are not trivial or
dependent on a candidate key.

Consider a table StudentCoursesHobbies with columns StudentID, Course,

and Hobby.

StudentID Course Hobby

S1 Math Painting
Sl Physics Painting
S1 Math Playing
S1 Physics Playing
S2 Chemistry Reading

In this table:
e StudentID determines Course and Hobby: A student can take multiple
courses and have multiple hobbies.

e There is a multivalued dependency: For a single student (StudentID), there
are multiple courses and hobbies.

19

e This table is not in 4NF: The multivalued dependencies (StudentID ->->
Course, StudentID ->-> Hobby) are not trivial and not dependent on a
candidate key.

To achieve 4NF, decompose the table into two tables:
e StudentCourses: StudentID, Course

e StudentHobbies: StudentID, Hobby

What is Multi-valued Dependency?
A table is said to have multi-valued dependency, if the following conditions are true,
1. For a dependency A — B, if for a single value of A, multiple value of B exists,
then the table may have multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valued
dependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A
and B, then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued
dependency.

Fifth Normal Form (5NF):

Fifth Normal Form (5NF), also known as Projection-Join Normal Form (PJ/NF), is the
highest level of database normalization, addressing join dependencies to minimize
redundancy and anomalies, especially when dealing with multi-valued facts and
relationships.

SNF eliminate redundancy and ensure data integrity by breaking down tables into
smaller, more manageable tables based on join dependencies.

Join Dependency: A table exhibits a join dependency if it can be reconstructed by
joining two or more tables, each containing a subset of the original table's attributes.
Example:

Consider a scenario where agents represent companies, companies make products, and
agents sell products. You might want to record which agent sells which product for
which company. This can be modeled with a table that has attributes
like AgentID, CompanyID, and ProductID. A 5NF design would ensure that this
information is stored efficiently without redundancy.

AgentID | AgentName | CompanylD | CompanyName | Location | ProductID | ProductName | Price

Benefits:
o Minimizes redundancy.

o Enhances data integrity.
o Simplifies data retrieval.

Drawbacks:

20

o Can lead to a larger number of tables and relationships, potentially
making the database design more complex.

o May require more complex queries.

Q) Types of Functional Dependencies?

1. Partial Dependency: A partial dependency occurs when a non-key attribute
(an attribute that's not part of any candidate key) depends on only a part of a
composite primary key (a primary key made up of multiple attributes).
Example:

StudentID CourselD StudentName

Consider a table with a composite primary key (StudentID, CourselD). If
StudentName depends only on StudentID, not on the combination of StudentID
and CourselD, then StudentName has a partial dependency.

Impact: Partial dependencies lead to data redundancy and anomalies, which
are problems that can occur when inserting, updating, or deleting data.

2. Full Dependency (Fully Functional Dependency): A full dependency exists
when a non-key attribute depends on the entire primary key, not just a part of it.

StudentID CourselD StudentName DOB CONTACT

In the same (StudentID, CourselD) example, if Grade depends on both
StudentID and CourselD, then Grade has a full dependency on the primary key.

Impact: Full dependencies are desirable for maintaining data integrity.

3. Transitive Dependency: A transitive dependency occurs when a non-key
attribute depends on another non-key attribute, rather than directly on the
primary key. If A — B and B — C, then A — C is a transitive dependency.
If StudentID — City and City — ZipCode, then StudentID — ZipCode is a
transitive dependency.

StudentID City ZipCode

Impact: Transitive dependencies also lead to data redundancy and anomalies.

21

Identifying Full, partial and transitive dependencies:

Full Dep. Transitive Dep. ‘
Student Student Year of Gender Enrollment | Course Course Course | @ or D Tutor
1D Name Birth Year =] Name Name
Partial Dep. Partial Dep.

Functional Dependency Diagram:
Full Dep: (StudentlD, CourselD) =2 Enrollment_Year
Partial Dep: StudentiD =2 Student Name, Year_ of Birth, Gender
Partial Dep: CourselD = Course_Name, Course_Units, TutorlD, Tutor_Name
Transitive Dep: TutoriD = Tutor_Name

5.B) Elaborate the importance of computing closure of functional dependencies.
Explain the procedure with an example.
The closure of functional dependencies (FDs) is a fundamental concept in relational
database design. It plays a crucial role in normalization, candidate key identification, and
checking for lossless decomposition.
Why is Computing Closure Important?
1. To Find Candidate Keys
By computing the closure of attribute sets, we can identify which sets of attributes
uniquely determine all attributes of a relation.
2. Normalization
Helps to detect redundancies and aids in decomposing relations into normal forms
(like 2NF, 3NF, BCNF).
3. Testing FD Implication
Closure helps determine whether a particular functional dependency follows logically
from a given set of dependencies.
4. Checking Equivalence of FD Sets
If two sets of FDs yield the same closure, they are considered equivalent.

Procedure to Compute Closure of an Attribute Set (X")

Let X be a set of attributes, and F be a set of functional dependencies. The closure of X with
respect to F, denoted as X, is the set of all attributes that are functionally determined by X
using F.

Steps:

1. Start with X" =X.
2. Repeat until no new attributes can be added:
o For each FD A—BA \rightarrow BA—B in F:

» [f ACX+A \subseteq X" +ACX+, then add B to X".

Example : Given:
Relation R(A, B, C, D, E)

Set of FDs, F:
1. A—B
2. B—>C
3. A—D

22

4. D—E
Compute A’ (Closure of A):

Step 1: Start with A" = {A}

Step 2:
e A—->B=AddB=A"={A, B}
e B> C(sinceBEA)=AddC=>A"={A,B,C}
e A—->D=AddD=A"={A,B,C,D}
e D>EMDEA)=>AAdE=A ={A,B,C,D,E}

Result: A"={A,B,C,D, E}
This means A is a candidate key for R, as it determines all attributes.

6.A) Define the transaction? Explain the properties of transactions.

Ans) a transaction is a sequence of one or more operations (such as read, write,
update, or delete) performed as a single logical unit of work. A transaction ensures
that a database remains in a consistent state even in cases of system failures or
concurrent access by multiple users.

Transactions are essential in database management systems (DBMS) to maintain data
integrity and consistency.

Properties of Transactions (ACID Properties):
Transactions are governed by four key properties known as ACID:

1. Atomicity:

o Ensures that all operations within a transaction are completed
successfully. If any part of the transaction fails, the entire transaction is
rolled back.

o Think of it as "all or nothing".

2. Consistency:

o Ensures that a transaction transforms the database from one valid state

to another valid state.

o Data integrity constraints must be maintained before and after the
transaction.
3. Isolation:
o Ensures that multiple transactions executing concurrently do not
interfere with each other.
o The intermediate state of a transaction should be invisible to other
transactions.
o Helps prevent problems like dirty reads, non-repeatable reads, and
phantom reads.
4. Durability:

23

o Ensures that once a transaction is committed, its changes are
permanent, even in the event of a system crash.
o Committed data is stored in non-volatile memory.

6.B) Discuss about view serializability in transaction management

Ans) View Serializability plays an essential role in transaction management, especially in
concurrent execution of transactions in a database system. It ensures that interleaved
transaction executions do not violate the correctness of the database.

Purpose in Transaction Management:

In transaction management, schedules define the order of operations from multiple
transactions. Since executing transactions one-by-one (serially) reduces performance,
concurrent execution is preferred for better system throughput.

However, concurrency can lead to inconsistencies. To avoid this, the DBMS uses
serializability criteria to ensure that the interleaved schedule behaves like a serial one in
terms of database correctness.

View Serializability:

1. Schedule: A sequence of read and write operations from one or more transactions.
Serial Schedule: Transactions are executed one after the other without overlapping.
View Equivalent Schedule: A non-serial schedule is said to be view equivalent to a
serial schedule if:

o Initial reads are the same.

o Reads in both schedules read the same values.

o Final writes are done by the same transactions.
4. View Serializable Schedule: A schedule that is view equivalent to a serial schedule.

bl

Importance in Transaction Management:

e Offers a more flexible and general form of serializability.

e Helps in understanding which schedules are logically correct.

e Used in theoretical analysis of transaction systems and in optimistic concurrency
control techniques.

6.C) Define the B+ Tree, discuss characteristics and operations supported by B+
Tree with suitable example.

Ans) A B+ Tree is an advanced type of self-balancing tree data structure that is
commonly used in databases and file systems for efficient searching, insertion,
deletion, and range queries. It is an extension of the B-Tree and is designed to store
data in a way that allows quick retrieval, even with large datasets.

Characteristics of a B+ Tree:
1. Balanced Tree:
o All leaves are at the same level, ensuring that the time to search, insert,
or delete is consistent and logarithmic in nature.
24

o This balance guarantees O(log n) time complexity for operations.
2. Internal Nodes:

o Internal nodes store only keys, not actual data (values). These keys act

as pointers to direct the search to the appropriate leaf node.
3. Leaf Nodes:

o Leaf nodes store actual data or references to the data.

o They are linked in a linked list, which enables efficient range queries
(traversing consecutive leaf nodes).

4. Ordered Keys:

o All keys in a node are stored in a sorted manner, ensuring that search

operations follow an ordered sequence.
5. M-way Tree:

o A B+ Tree is an M-way tree, meaning each node can have M children,
where M is the order of the tree. The order M determines the maximum
number of children each node can have.

6. Search Efficiency:

o The search operation is similar to a binary search, but because all data

is in the leaf nodes, it is efficient for both single lookups and range

queries.
Operations Supported by B+ Tree:
1. Search:

o Search operations start at the root node and traverse down the tree to the
appropriate leaf node by following pointers. The search complexity is
O(log n), where n is the number of keys in the tree.

o Example: To find a key, the algorithm follows the pointers from the root
through the internal nodes to the leaf node, where the key resides.

2. Insertion:

o Insertion starts by finding the correct leaf node to insert the key. If the
leaf node is full, it splits into two nodes, and the middle key is
propagated upwards into the parent node.

o Example: If inserting key 15 into a node, it finds the correct leaf and
inserts it. If the leaf node is full, it splits, and the middle value is moved
up.

3. Deletion:

o Deletion is done by removing the key from the appropriate leaf node. If
the deletion causes the leaf node to underflow (i.e., have fewer than the
minimum required keys), it may borrow a key from a sibling or merge
with a sibling.

o Example: If key 15 is deleted from the tree, it may be merged with a

sibling if the leaf node is underfilled.
4. Range Queries:

o The linked list of leaf nodes makes range queries particularly efficient.
You can quickly traverse through consecutive keys from one leaf node
to another to answer range-based queries.

o Example: For a query requesting all values between 15 and 25, the B+
Tree allows you to find 15 and then move through consecutive leaf
nodes to retrieve all values up to 25.

25

Example of a B+ Tree:
Let's consider a B+ Tree of order 3 (i.e., each node can have a maximum of 3
children):
e Initial Tree: Inserting values 10, 20, 5, 6, 8, 15, 25, 30.
Step 1: Insert 10, 20, and 5. The tree looks like this:
[5, 10, 20]
Step 2: Insert 6, 8. The tree will split, and the middle key (6) will propagate to the
parent node:
[10]
/A
[5,6] [8,20]

Step 3: Insert 15, 25, 30. The tree expands, and keys propagate upwards:

[10, 20]
/ | \
[5,6] [8] [15] [25,30]
Final Tree Structure:
e The leaf nodes store the actual data values, and the internal nodes store the
keys used for searching.
Advantages of B+ Tree:
1. Efficient Range Queries:
o The linked list of leaf nodes makes it very efficient to perform range queries.
You can easily traverse all leaf nodes without additional searching.
2. Balanced Structure:
o The B+ Tree remains balanced, providing predictable and consistent
performance for insert, delete, and search operations.
3. Disk Efficiency:
o Since B+ Trees store keys in internal nodes and actual data in leaves, they are
more disk-efficient, minimizing disk accesses and maximizing the utilization
of disk block space.

Disadvantages of B+ Tree:
1. Complexity:
o B+ Trees require complex algorithms for insertion and deletion, especially
when handling node splits and merges.

2. Memory Overhead:

o Due to the additional linked list in the leaves, the B+ Tree may require more memory
compared to other data structures like B-Trees.

26

	DATA BASE MANAGEMENT SYSTEMS
	Procedure to Compute Closure of an Attribute Set (X⁺)
	
	Steps:

