

ARIA-AT Automation Design Doc
​

2020-12-18

Summary
Prototype automation of ARIA AT tests with NVDA. Then, develop a cross-AT
automation protocol and fully automate ARIA AT testing and results reporting.

Please provide feedback on this document in aria-at issue 349.

Goals
Near term (2020):

●​ Proof of concept: At least one ARIA-AT test is automated with
NVDA/Chrome/Windows 10.

●​ Start a discussion with Browser Testing and Tools WG and
web-platform-tests project about standardizing a WebDriver-like protocol
for screen reader automation.

●​ Stretch: ARIA-AT Automation is running in CI for at least one of w3c/aria-at
and nvaccess/nvda projects.

●​ Stretch: Automated test results integration with aria-at-app.

Longer term (2021 onwards):

●​ Automate JAWS, VoiceOver (macOS & iOS), Narrator, ChromeVox, TalkBack,
Orca.

●​ Develop a WebDriver-like protocol for screen reader automation.
●​ ARIA AT tests are automated using the new protocol.
●​ ARIA AT tests are run daily in NVDA, JAWS, VoiceOver (and others), and test

results available in a report with no manual intervention.

Use cases for a WebDriver-like protocol
●​ Ease of maintenance for the ARIA AT tests
●​ Web developers can write automated AT tests for their web sites/apps
●​ Integrate with devtools
●​ Use for “remote desktop” with AT?

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1

https://github.com/w3c/aria-at/issues/349

ARIA-AT Automation Design Doc
​

2020-12-18

●​ Integrate with AT CI
●​ Integrate with browser CI (fuzzing, thread sanitizer, compat)
●​ Make available to WPT
●​ Simulators and design tools for web designers/developers

Design

Test format
Each test in aria-at has one JSON file per AT, with a sequence of commands and
assertions needed to run the test in that AT. The automated tests are in the same
folder as the manual tests, and include the name of the AT in the filename.

Example:​
tests/checkbox/automated/test-01-navigate-to-unchecked-checkbox-
reading.nvda.json

The JSON structure is as follows:

●​ At the top level is an array
●​ Each item of the array is an object that represents commands.
●​ The command object has a single key that represents the name of the

command, and a value that is an array containing the arguments to the
command. Unless otherwise stated, commands accept one argument.

●​ Each argument is a string, boolean, number, or null. Unless otherwise stated,
the expected type is a string.

Strings are case-sensitive unless otherwise stated.

Example:​
[​
 {​
 "nav": [​
 "tests/checkbox/reference/two-state-checkbox.html"​
]​
 },​

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2

ARIA-AT Automation Design Doc
​

2020-12-18

 {​
 "press": [​
 "x"​
]​
 },​
 {​
 "assert_role": [​
 "checkbox"​
]​
 }​
]

The commands are:

●​ nav
○​ Navigate the browser to the given URL. The URL may be relative, in

which case the base is the root of the git repository.
○​ This command must be the first command.
○​ Example:​

{​
 "nav": [​
 "tests/checkbox/reference/two-state-checkbox.html"​
]​
}

●​ press
○​ Simulate a key press or a key combination. The output of the AT in

response to the key press will be appended to lastSpeech as a string to
the following assertions. lastSpeech is normalized by replacing
sequences of whitespace with a single space.

○​ Example:​
{​
 "press": [​
 "Shift+x"​

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 3

ARIA-AT Automation Design Doc
​

2020-12-18

]​
}

●​ press_until_contains
○​ Takes 2 arguments (strings). Simulate a key press or a key combination

repeatedly until the AT output contains the second argument. The
output of the AT in response to the key presses will be appended to
lastSpeech as a string to the following assertions. lastSpeech is
normalized by replacing sequences of whitespace with a single space.

○​ Example:​
{​
 "press_until_contains": [​
 "h",​
 "Checkbox Example (Two State)"​
]​
}

●​ press_until_role
○​ Takes 2 arguments (strings). Simulate a key press or a key combination

repeatedly until the AT output contains the AT-specific representation
for the ARIA role given in the second argument. The output of the AT
in response to the key presses will be appended to lastSpeech as a
string to the following assertions. lastSpeech is normalized by
replacing sequences of whitespace with a single space.

○​ Example:​
{​
 "press_until_role": [​
 "x",​
 "checkbox"​
]​
}

●​ clear_output
○​ No arguments. Set lastSpeech to the empty string.
○​ Example:​

{​

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4

https://w3c.github.io/aria/#role_definitions

ARIA-AT Automation Design Doc
​

2020-12-18

 "clear_output": []​
}

●​ assert_contains
○​ Takes one or two arguments: expected (a string), count (an integer).

Assert that lastSpeech contains the expected exactly count times, or at
least once if count is not given.

○​ Example:​
{​
 "assert_contains": [​
 "Checkbox Example (Two State)",​
 1​
]​
}

●​ assert_role
○​ Assert that lastSpeech contains the AT-specific representation for the

given ARIA role exactly once. For example, NVDA says “check box” (as
two words) for the ARIA role checkbox. May be used when checking
the role.

○​ Example:​
{​
 "assert_role": [​
 "checkbox"​
]​
}

●​ assert_state_or_property
○​ Takes 2 arguments: state_or_property (a string), value (a string). Assert

that lastSpeech contains the AT-specific representation for the ARIA
state or property state_or_property with value, and does not contain
other possible AT-specific representations for that state or property
with other possible values (ignoring any that are substrings of the
expected value).

○​ Example:​
{​

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 5

https://w3c.github.io/aria/#role_definitions

ARIA-AT Automation Design Doc
​

2020-12-18

 "assert_state_or_property": [​
 "aria-checked",​
 "false"​
]​
}

■​ With NVDA, this would assert that lastSpeech contains “not
checked” and does not contain “half checked”. It can’t look for
the true state, because “checked” is a substring of “not
checked”.

●​ assert_equals
○​ Assert that lastSpeech is equal to the given string. May be used to test

the full output.
○​ Example:​

{​
 "assert_equals": [​
 "Sandwich Condiments grouping list with 4 items
Lettuce check box not checked"​
]​
}

Authoring tests
The test format outlined in the previous section is expected to be generated from
the same test source material that generates the manual tests. This might need
changes to the test source material to make this possible, and as a consequence
could result in some changes to the generated manual tests. In particular, for
automation, a precise sequence of key presses and assertions are necessary.

Issue: How to solve this needs discussion. #349, #358

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 6

https://github.com/w3c/aria-at/issues/349
https://github.com/w3c/aria-at/issues/358

ARIA-AT Automation Design Doc
​

2020-12-18

Running tests
Each AT is expected to implement an AT driver and ARIA-AT test runner.

An AT driver is a piece of software that can simulate keypresses to control the AT
and record output from the AT in response to those keypresses, as a string.

Issue: The AT driver may also need to be able to change settings and maybe read
internal state.

An AT driver could support communication with HTTP or WebSocket, similar to
WebDriver for browsers. A protocol for this idea is not yet defined.

Issue: It’s unclear if it’s possible to have a single protocol that works for all ATs.

Issue: Discuss security considerations.

An ARIA-AT test runner is a piece of software that can parse the test format
outlined above and forwards commands either to a browser (nav) or to the AT
driver (press), and collect the output from the AT driver (for assertions).

Issue: Expand this section.

Prototype implementation
A prototype implementation of the test format and test runner described in this
document for the NVDA screen reader is available for review.

●​ Test runner implementation for NVDA
●​ Test file for aria-at

Bocoup
PO Box 961436
Boston, MA 02196
617 379 2752​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7

https://github.com/bocoup/nvda/pull/2
https://github.com/w3c/aria-at/pull/350

	Summary
	Goals
	Use cases for a WebDriver-like protocol
	Design
	Test format
	Authoring tests
	Running tests

	Prototype implementation

