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A staggering 10 million students were enrolled in engineering programs across India in 2016. With no 
concept of career fairs in Indian engineering colleges, campus recruitment drives (known as 
placements) are an integral part of the Indian education system. A separate department, commonly 
referred to as the Placement Cell, is responsible for inviting companies every year during what is called 
the ‘Placement Season’ to hire students who are about to graduate. However, Placement Cells, in 
general, fail to respond to the ever-changing diversity in student profiles and career interests, and stick 
to a static list of companies for the Placement Season every year. With this project, we created a 
machine learning model that would help the Placement Cell to be better prepared for an incoming 
Placement Season. By using student academic scores, graduation and job information, we populate the 
list of job domains and probable student distribution that the Placement Cell could use and target 
companies in order to cater to the requirements of the current student profiles. Additionally, we use 
existing salary information to predict salary ranges for a given student profile; information that the 
Placement Cell can use to negotiate salary packages with the invited companies and job profiles. Our 
results report reasonably high accuracies in predicting job domains and salary buckets. We believe our 
model can help Placement Cells target the right mix of companies thus enabling students to find better 
jobs. 
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Introduction 

Motivation 
The Indian education system is quite different from the education system in the US, especially when it 
comes to the job search process of graduating students. In the US, universities and colleges organize 
career fairs, alumni meetups and company talks for students to find job opportunities through 
networking. In contrast, Indian universities and colleges invite various companies on campus to hire 
students. The invited companies commonly conduct technical & aptitude tests, group discussions and 
face-to-face interviews before hiring students. This process of inviting companies on campus to hire 
students is popularly known as ‘campus placement’. As undergraduate students from India, we have 
been through the campus placement process where we applied to several companies that were invited 
to our engineering institutions. 
  
The campus placement process in every Indian institution starts with a ‘Placement Cell’. A placement 
cell comprises of college officials and students, and is responsible for contacting companies and invite 
them to conduct their recruitment process to hire students who are in their final year. Generally, 
institutes have long-standing relationships with a few companies which visit that institution every year. 
This happens because an institution develops a good reputation of having students that do well in 
those companies. In spite of this, the number of students that a company hires from a particular college 
can greatly vary from year to year. 
  
After talking to a couple of placement cell officers, we found that that colleges don’t have a specific 
approach to inviting companies and they tend to invite the same companies every year without 
thinking too much about inviting new companies. Thus, they fail to cater to the ever-changing student 
profiles and not every targeted domain is covered in the process. We felt that machine learning could 
help placement cells in taking more informed decisions about the type of companies that should be 
invited. This informed decision would take into consideration the scores and qualities of the students. 
 
With this goal in mind, our search for a dataset with student academic scores and job  outcomes led us 
to the Aspiring Minds Dataset. The dataset was released by Aspiring Minds, a test taking institution 
similar to the GRE or GMAT, but who administer tests of job skills. These standardized score are 
supposedly a good indicator of a student’s performance on the job, and are considered by companies 
during their recruitment process. We felt that this dataset would be perfect for our task of predicting 
possible job domains that students might find jobs in, given their academic scores. Armed with a 
dataset of student’s academic scores, the placement cell of an institution could use this model to 



 

estimate the number and job domains their students would likely find jobs in. This could be the basis 
for a more targeted strategy by placement cells for reaching out to companies that offer such jobs, thus 
maximizing campus placements of their students. 
 

Prior Work 
The AMCAT dataset was part of a data challenge organized by ACM IKDD Conference on Data 
Science in 2016. The primary task of the data challenge was predicting salaries. Subtasks consisted of 
drawing insights on what factors determined salaries and creating interesting visualizations on job titles 
and job cities. 
 
The papers submitted by the four winning teams are linked in the Appendix. Following is a short 
summary of the methods used in each paper:  

1.​ After dividing the salary on 5 bins, the authors used different regression models - ridge 
regression, lasso regression and linear regression with median of means estimator to predict 
salaries. They used model coefficient values to infer factors affecting salary. 

2.​ The authors use three different models - multiple linear regression, SVM and multivariate 
adaptive regression splines to make salary predictions. The also built a Salary Predictor app 
from their model. 

3.​ The approach taken in predicting salaries consisted of dividing salaries into three buckets: < 
₹300,000, ₹300,001 - ₹400,000 and >₹400,001 and applying various supervised machine 
learning models. The authors used Random Forests node analysis and feature importances to 
infer factors affecting salary. They also used Pearson Correlation test and Welch Two Sample 
t-test to find and make inferences from features correlated to salary. 

4.​ The authors used bayesian networks to predict salary and draw inferences. 
 
To our knowledge, no prior work has been done on predicting job domains and corresponding salary 
buckets, the task we undertake in this project.  
 

Dataset Description and Preprocessing 

Description 
The dataset contains information about engineering students and their employment outcomes. Each 
record of the dataset consists of an anonymized students profile/academic scoring information along 
with their employment outcome information. There are a total of 3998 records, and 39 features. 

http://ikdd.acm.org/Site/CoDS2016/datachallenge.html
http://ikdd.acm.org/Site/CoDS2016/datachallenge.html


 

Candidate Profile Information includes:  

●​ Scores on Aspiring Minds’ AMCAT – a standardized test of job skills. The test includes 
cognitive, domain and personality assessments 

●​ Personal information like gender, date of birth, etc. 
●​ Pre-university information like high school grades, high school location 
●​ University information like GPA, college major, college reputation proxy. 
●​ Demographic information like location of college, candidates’ permanent location 

Employment Outcome Information includes: 

●​ First job annual salary 
●​ First job title 
●​ First job location 

Preprocessing 
Given that our dataset consisted of students’ self reported information in freeform text fields, a major 
chunk of our time was spent in sanitizing the dataset. We cleaned our data manually as follows: 

1.​ Categorical text features 
a.​ Specialization - There were 46 unique entries, may of which were the similar (eg. 

‘computer engineering’ vs. ‘computer science & engineering’ or ‘electronics & 
telecommunication’ vs. ‘electronics and communication engineering’). We mapped these 
into 10 unique entries. 

 
b.​ 10board and 12board - Indicates the board the student’s school follows. India has 

two central boards and every state with its own board. We mapped 340 unique values 
into 3 values: 2 central boards (‘cbse’, ‘icse’) and ‘state board’. 

 
c.​ JobCity - After fixing entries with typos (of which there were many), we collated 

JobCity by area eg. a single area ‘NCR’ covering ‘Delhi’, ‘Gurgaon’, ‘Noida’, 
‘Ghaziabad’. (This is similar to the Bay Area representing SF, East Bay, Berkeley etc.). 
We dropped 10 records where the JobCity was located outside India.  

 
d.​ Domain - The free-form input for the designation field made it very difficult to use the 

original values. We combined a list of ~420 designations into 11 job domains. For 
instance, designations such as Software Engineering, Full Stack Developer were 
grouped into the ‘Comp. Science Engineering’ domain. 

​  
We then one-hot encoded the categorical features. 
 



 

 
2.​ Numeric features 

a.​ ComputerProgramming, ElectronicsAndSemicon, ComputerScience, 
MechanicalEngg, ElectricalEngg, TelecomEngg had very few values since they are 
optional components of the AMCAT exam. We created a new feature with the the 
average scores of the above features and mapped values 0 (did not take exam) and 1 
(took exam) in the original feature columns. 

3.​ Date features 
a.​ DOB was converted to Age 
b.​ DOJ (Date of joining) and DOL (Date of leaving) was converted to a new field 

FirstJobDuration. 
c.​ DOJ and Year of Graduation was used to create a new feature denoting the number of 

years of experience the candidate has 
 

Methods 

Exploratory Data Analysis 
We conducted an initial exploratory data analysis to understand the distribution of data and identify trends that 
could be useful in feature engineering for our machine learning models. Some of the graphs we plotted during 
EDA are listed in Appendix B. We concluded the following: 
 
Looking at the distribution of students in our custom engineered feature domains (Fig B1a and B1b), we 
realized that data is imbalanced as a large percentage of students end up in taking jobs in the Computer Science 
Engineering domain. We use upsampling to balance our dataset for ML analysis. We see that engineering jobs are 
more popular than non-engineering jobs among students taking AMCAT. Most of the students taking 
AMCAT (in this dataset), are pursuing an Engineering degree (Fig B2). Electronics and Computer Engineering 
are the most popular specialization amongst students/AMCAT test takers, with Information Technology 
following close behind (Fig B3). The age distribution of students taking AMCAT is almost normal with a slight 
positive skew, centered around 26 years (Fig B4). We also notice that a large number of students leave their first 
job within the first year, with another peak at 3 years (Fig B5). 
 
Turning our attention to the distribution of other variables when compared to Domains, we draw the following 
conclusions: 

Test Score 
Type 

Highest scoring students go 
into these domains 

Lowest scoring students go into 
these domains 

ANOVA 
Results 

College GPA 
(Fig B7) 

Systems Engineering 
Research 

Support 
Management and Related 

P < 0.01 
ω2 = 0.03 



 

Computer Science Engineering Med Effect 

AMCAT Quant 
(Fig B8) 

Systems Engineering 
Computer Science Engineering 

Support 
Education 

P < 0.01 
ω2 = 0.02 
Small Effect 

AMCAT 
English 
(Fig B9) 

Systems Engineering 
Data Science and Engineering 
Management and Related 

Education 
Electrical and Comm. Engineering 

P < 0.01 
ω2 = 0.02 
Small Effect 

AMCAT 
Domain 
(Fig B10) 

Systems Engineering 
Computer Science Engineering 
Research 

Electrical and Comm. Engineering 
Support 
Management and Related 

P < 0.01 
ω2 = 0.03 
Med Effect 

 
From the data in the table above, we conclude that there is a relationship between scores and domains. 
Additionally, students taking up jobs in Systems Engineering domain earn the highest salaries on average, 
followed by Data Science Engineering and Computer Science Engineering domains. Jobs in Education and 
Support domains pay the least (Fig B6).  

Modeling Approach 
In our attempt to address our problem statement, we divided our work into two major parts and created separate 
models.  

Identifying Matching Job Domains 
As mentioned in the section on data pre-processing, we created job domains from the existing designations in 
our dataset. Initially, we ended up creating 14 domains which we felt covered all the designations in an 
exhaustive manner. The split of students in our data based on domains is shown in figure 1 in appendix B. 

Minority Class Upsampling 

Once we created these domains, we saw that there was a lot of class imbalance as the majority class heavily 
dominated our dataset. In order to compensate for this imbalance, we decided to upsample the data so that all 
our classes would have equal representation in the dataset. This upsampling was done on the training set we 
obtained from a 80-20 split of our dataset. After upsampling, we had ~16,000 records in our up-sampled 
training data. The test data had ~800 records as a result of the 80-20 split of our main dataset. 

Hyper-parameter Tuning and Machine Learning Techniques 

After obtaining the up-sampled training data and the test data from the 80-20 split, we decided to tune the 
hyper-parameters for Logistic Regression, Linear_SVC and Tree-based Classifiers. We chose these machine 
learning techniques because the task of identifying job domains is a classification problem. Hyper-parameter 
tuning was done using GridSearchCV and the results obtained from this were used for fitting our up-sampled 
training data & labels and for predicting the test labels. The process of upsampling, hyperparameter tuning and 
applying machine learning techniques was done in 2 iterations. 



 

Iteration 1 

In the first iteration we worked with the 14 domains that we had created. Among the 14 domains, the majority 
class heavily dominated our dataset (over 60%). After upsampling, tuning the hyper-parameters for the above 
mentioned machine learning techniques and applying those techniques to predict test data accuracy, we found 
our results (accuracy, precision, recall, AUC) to be extremely low for all the machine learning techniques. This 
was when we decided to refine the domains we created in an attempt to reduce the bias we had created with the 
14 domains. This was done in the next iteration. 

Iteration 2 

After spending some more time analyzing the designations from the original dataset and the domains we had 
initially created, we refined our domains to come up with 11 domains which had a better split as compared to 
the first iteration while continuing to remain exhaustive and meaningful. With this ‘refined’ data, we again 
performed an 80-20 split and upsampled the training data. Since we did not add or remove data points, we had 
the same number of records in the training and test data as we had before with the 14 domains. The split of 
students in our data based on the 11 domains after the second iteration is shown in figure 2 in appendix B. 
 
After performing hyper-parameter tuning for logistic regression (as one-vs-rest classifier) and Linear_SVC, we 
applied these 2 algorithms to fit our up-sampled training data and their respective labels (with the 11 refined 
domains). The accuracy, precision, recall and area under curve were very poor (closer to 50%) even after using 
the tuned hyper-parameters. We then decided to go with tree-based classifiers as we felt that they could give us 
improved results because they are inherently multi-class. We used ExtraTreeClassifier, DecisionTreeClassifer and 
RandomForestClassifier. Our results with these tree-based classifiers were an improvement over the results from 
logistic regression and Linear_SVC. 

Providing Better Insights on Salaries 
The ‘Salary’ field in our dataset contains a large range of values. The below tables provides summary statistics for 
the same field. 
 

Metric Value 

Minimum ₹ 35,000.0 

Maximum ₹ 4,000,000.0 

Mean ₹ 305,686.8 

Median ₹ 300,000.0 

Standard Deviation ₹ 206,294.7 

 
We also noticed that a number of salary values were less than ₹ 100,000 which is an extremely low salary figure. 
After closely examining these records, we concluded that it could very well be the case that such responses 



 

indicate monthly salaries and not annual figures. But since there was no way of telling the truth, we decided to 
drop records with salary values less than ₹ 100,000. 

Unsupervised Learning Methods 

In order to find the perfect buckets to split the salary values, we took help of an unsupervised learning method; 
K-Means Clustering. Our analysis to find the best of value of k resulted in two different values of k = [2, 4]. Even 
though the silhouette coefficient obtained for k = 2 was of a higher value, we further looked at the boundaries of 
the different clusters and the number of records in each cluster for both values of k. For k = 2, we noticed that 
more than 95% of our dataset was part of just one cluster; this is not something that we want to consider as it 
would make our model and training set highly biased. Using k = 4 gave us a significantly better split of data 
which avoided the bias that k = 2 might have introduced. 

Minority Class Upsampling 

After assigning our input data to the created k = 4 clusters, we split the dataset into Training and Test datasets 
and upsampled the training dataset to balance the number of records in the majority class and to ensure that we 
capture enough data points for our minority classes. 

Supervised Learning Models and Hyper-parameter Tuning 

Our exploration of supervised machine learning models that work best with our data and set of features led us to 
the conclusion that Decision Trees and Random Forests provide the best performance. Using GridSearch, we 
tried to find the best hyper-parameter setting for our Decision Trees and Random Forest models. In search for 
the best hyper-parameter, we searched through a large number of hyper-parameter combinations and proceeded 
further with fitting newly tuned model with the training data. Unlike the first problem that we are addressing, 
we have only 4 target classes (or salary buckets). We moved ahead with a 66-34 split on the dataset for training 
and test subsets for the models that we implemented. 
 
We discuss the results and conclusions from our above models in the next section. 

 

 



 

Results 

Feature Importance 
Apart from the methods and analysis we have talked about above, we also analyzed the importance of the 
features in our data. Based on our results, we found that the 5 most important features were: 

1.​ 10percentage  
2.​ SecScore  
3.​ 12percentage  
4.​ collegeGPA  
5.​ English 

 
The least important features according to our analysis were: 

1.​ M.Sc. (Tech.)  
2.​ Chemical Engineering  
3.​ Other Specialization  
4.​ Biomedical Engineering  
5.​ Civil Engineering 

Identifying Matching Job Domains 
Below are the results for the tree-based classification models that we trained after tuning the hyper-parameters 
using GridSearch. 

Learning Model Hyper-parameters Training 
Accuracy 

Test 
Accuracy 

Decision Trees Criterion = Entropy 
Max Depth = 20 
Max Features = 7 
Min Samples Leaf = 3 
Min Samples Split = 2 

80.95 79.94% 

Extra Tree Classifier Criterion = Entropy 
Max Depth = 20 
Max Features = 10 
Min Samples Leaf = 3 
Min Samples Split = 2 

74.3% 65.16% 
 
 
 
 

Random Forest Criterion = Entropy 
Max Depth = 20 
Max Features = 5 
Min Samples Leaf = 3 
Min Samples Split = 7 
Bootstrap = False 

88.79% 83.71% 



 

 
For the above classifiers, the confusion matrices and graphs showing area under curve are attached in Appendix 
B.  

Providing Better Insights on Salaries 
Below are the results for the supervised learning models that we trained after tuning the hyper-parameters using 
GridSearch. 

Learning Model Hyper-parameters Training 
Accuracy 

Test 
Accuracy 

Decision Trees 

Max Depth = 20 
Criterion = ‘gini’ 
Max Features = 20 
Min Samples Leaf = 1 
Min Samples Split = 2 

82.37% 50.90% 

Random Forests 

# Estimators = 25 
Max Depth = 20 
Criterion = ‘entropy’ 
Max Features = 20 
Min Samples Leaf = 1 
Min Samples Split = 5 

88.30% 60.40% 

 
From the performance of our two tuned models, we can see that there was a significant improvement in test set 
accuracy from Decision Trees to Random Forests. Looking below at the AUC plot for Random Forests, we can 
observe that the model is performing very poorly for a specific class and this might explain the overall poor 
accuracy of the test set. Nevertheless, it is a significant improvement over Decision Trees. 
 
 
 



 

 
 
 

Discussion & Conclusion 
The results of our feature importances reconcile with our personal experiences. If we look at the 5 most 
important features, we observe that these features are grades and scores. Most companies visiting campuses for 
placements set cut-off limits for the GPA as well as the percentages obtained in the 10th & 12th grades. SecScore 
(a derived feature) and English are performance indicators of a student on the AMCAT exam and are important 
for finding a student’s knowledge and aptitude.  
 
If we consider the least important features, we see that a majority of them are specializations (or the major) of 
students. Since the career interests of students often change during the course of their studies, quite a few of 
them end up taking jobs that are not related to their specializations. Because placement cells often fail to take this 
factor into account, they end up inviting the wrong mix of companies based on the number of students in every 
specialization. Our model can help them rectify this approach by giving them a holistic view of student profiles. 
 



 

If we look at the results of the classifiers used for predicting the job domains, we find that the Random Forests 
performs the best. This can be verified by comparing the ROC graph and confusion matrix of the classifier with 
the ROC graphs and confusion matrices of the Decision Tree and Extra Tree classifiers. In terms of  
performance metrics, we got a test accuracy of over 80% with the Random Forest Classifier. On taking a closer 
look at the ROC graph, we see that the classifier does a better job than the other 2 classifiers in predicting true 
positives for a greater number of classes. If we compare the 3 confusion matrices, we find that the Random 
Forest Classifier has a lesser misclassification rate than the other 2 classifiers.  
 
 

 
Pie chart showing the domain percentage as predicted by the Random Forest Classifier 

 
The above pie-chart gives us a very good idea of the job domains that the students in our test set are likely to 
enter into. If this information is available to the placement cell of a college or university, they would be able to 
make an informed decision about the types of companies that they should target to come on campus to hire 
students. If the placement cell were to focus only on inviting companies in the Computer Science & Engineering 
and System Engineering domains, they would not be able to match a majority of the students with various 



 

appropriate job domains that are suitable for them. In conclusion, a model like the one we have created using the 
Random Forest Classifier will help placement cells target the right set of companies and help students in finding 
the right job based on their interests and academic profile. 

Further Improvements and Future Scope 
We believe that a number of small improvements in the data collection process can drastically improve the 
performance of the underlying models. One of the major challenges that we faced with this dataset was that of 
free-form text responses. Multiple respondents with similar designations had different values in the designation 
column as there was no data quality check in place when the data was collected. This is what motivated us to 
group designations into different domains and at the same time preserve the meaning. Salary was another 
column that needed to be checked against monthly or annual income figures. Further, if instead of providing 
exact salary figures, Aspiring Minds can aim to collect salary brackets for the different respondents. If enough 
data points, this would eliminate the need for using unsupervised models such as K-Means. 
 

 
 

 
 
 
 
 

 



 

Appendix A: Aspiring Minds Data Challenge Winning Submissions 
 

1.​ Predict job success based on Student’s credentials - 
http://research.aspiringminds.com/wp-content/uploads/2016/06/TEAM-DS-Final_report.p
df 

2.​ Understanding Labor Markets - 
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper13_CameraReady.pd
f 

3.​ Understanding the Indian Labour Market: A Data Centric Approach - 
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper29_CameraReady.pd
f 

4.​ Bayesian Visual Analysis of the Indian Labour Market - 
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper11_CameraReady.pd
f  

 

http://research.aspiringminds.com/wp-content/uploads/2016/06/TEAM-DS-Final_report.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/TEAM-DS-Final_report.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper13_CameraReady.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper13_CameraReady.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper29_CameraReady.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper29_CameraReady.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper11_CameraReady.pdf
http://research.aspiringminds.com/wp-content/uploads/2016/06/Paper11_CameraReady.pdf


 

Appendix B: Exploratory Data Analysis Graphs 

 

Fig B1a. Distribution of Domains in original dataset 

 

Fig B1b. Distribution of Domains after second iteration 



 

 
Fig B2. Distribution of Degree Types 

 

 
Fig B3. Distribution of Specialization Types 



 

 
Fig B4. Distribution of Age of students surveyed 

 

 
Fig B5. Distribution of Duration of First Job



 

 
Fig B6. Distribution of Salary per Domain 

 
 

Fig B7. Distribution of College GPA per Domain 



 

 
 

 
Fig B8. Distribution of AMCAT Quant scores per Domain 

 

 
Fig B9. Distribution of AMCAT English scores per Domain 



 

 
 

Fig B10. Distribution of AMCAT Domain Scores per Domain 
 
 
 
 
 
 
 



 

 
Confusion Matrix for Decision Tree Classifier 

 

 
Receiver Operator Characteristics Curve for Decision Tree Classifier 



 

 
Confusion Matrix for Extra Tree Classifier 

 

 
Receiver Operator Characteristics Curve for Extra Tree Classifier 



 

 
Confusion Matrix for Random Forest Classifier 

 

 
Receiver Operator Characteristics Curve for Random Forest Classifier 



 

 
 
 
 



 

 

2) Final report (2400-3000 words): The final report will be the primary basis for evaluation of your 
project.  The first page of your report should consist of a title page that lists the names of all group 
members, a title for your project, and a short abstract, no more than 250 words, which describes the 
key findings of your group.  Include in your report any figures, tables, or multimedia (as hyperlinks) 
that you develop in the course of your project.  Code and other relevant but non-essential material may 
optionally be included as appendices.  The content of the title page, references, footnotes, and 
appendices does not count toward the word limit.  In the body of your report, you should include a 
discussion of the following: 

●​ Datasets used 
●​ Primary methods implemented 
●​ Results 
●​ Discussion 
●​ Conclusions 
●​ References 

 

 

Your project will be evaluated, and your grade determined, using the following criteria: 

1.​ Relevance to class: The project must engage with supervised learning methods, and those 
methods must be necessary and not incidental to the execution of your project 

2.​ Novelty and usefulness: You should be able to convince your grandma that your project is 
interesting, and convince a skeptic that no one has done this before. Summarize prior work 
you have seen on this or closely-related topics. 

3.​ Methodological rigor: Choose data sets with enough examples to get statistically significant 
results; use appropriate methods in appropriate ways; don't ask unanswerable 
questions; design your experiments correctly (with separate test data, 
cross-validation, and reasonable baselines); interpret your results correctly. 

4.​ Clarity of written report -- Clearly and succinctly articulate your question and/goals early. 
Clearly describe how you process and analyze the data, and summarize the data being used 
in the analysis. Add figures and tables and other effective visualizations. 

 

Rubric  

Criteria Pts 



 

Description of prior work 5.0 pts 

Methodological rigor - are modeling/analysis decisions clearly justified? 10.0 pts 

Description of data and description of analysis performed - is everything crystal clear? 8.0 pts 

Effectiveness of figures and tables 7.0 pts 

Presentation and interpretation of results - are conclusions clearly stated and justified? 10.0 pts 

Writing quality and professionalism/copyediting 5.0 pts 

Ambition and novelty 5.0 pts 

Quality of post on Online Gallery 5.0 pts 

 Total 
Points: 
55.0 

Josh’s Comments: 
 
Your team did a good job presenting a relatively complex project. That said, I have several suggestions 
for improvement:​
 - The questions you ask on the first slide are interesting, but some of them are not questions that can 
really be answered with your data. More importantly, it's not clear what your answer is to several of 
these questions, from the presentation. Make sure to connect these dots clearly in your report. 
Eliminate questions that cannot be answered.​
 - The slides themselves were very cluttered and the font on almost all of the figures was illegible. When 
crafting presentations, you need to put yourselves in the perspective the person attending the 
presentation, not the person giving the presentation. From that perspective, do the figures make sense? 
Please make sure to clean these up and make them much more professional in your report.​
 - It was never quite clear how a "placement cell" was defined 
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