
ELO Learning
REQUIREMENTS DOCUMENT

University of Pretoria

Name Student number

RM (Rene) Brancon u22556771

NF (Nigel) Mofati u22528084

TM (Tukelo) Mokwena u22536800

S (Saskia) Steyn u17267162

NG (Ntokozo) Tonga u22506773

Team contact:
ZeroDay0D4y@gmail.com

mailto:ZeroDay0D4y@gmail.com

|Contents

1 Introduction... 3
1.1 Purpose of the Document...3
1.2 Scope of the System.. 3
1.3 Intended Audience... 3

2. User Stories.. 4
1. Students (Primary Users)... 4
2. System... 5
Adaptive Testing & ELO Calculation...5
Submission Evaluation & Feedback...5
Tracking & Analytics... 6
Leaderboard and Abuse Prevention...6
Notifications & Engagement... 6
3. Admin (Developers and Stakeholders)...6
Content & Question Management.. 6
User Account Management..6
Data Protection & Compliance... 7
Analytics & Trends..7

3. System Requirements... 8
FR1: User Registration and Profile Creation.. 8
FR2: Secure Login and Authentication...8
FR3: Baseline Testing & Adaptive Questioning..8
FR4: Game Modes and Math Practice... 8
FR5: Math Keyboard Input... 8
FR6: Feedback and Memorandum...9
FR8: ELO & Performance Analytics... 9
FR9: Push Notifications..9
FR10: User Accessibility.. 9
FR11: Admin – Content & Question Management... 9
FR12: Admin – User Management...10
FR14: Admin – Reporting and Analytics.. 10

4. Use Cases... 11
5. Architectural Diagram..16
5. Domain Model...17
6. Math Sections...18
Grade 8:...18
Grade 9:...18
Grade 10:...18
Grade 11 + 12:...19

Technology Choices... 19
Frontend Development: React.js and Next.js (PWA)... 19
Backend Development: Express.js...19
Database Strategy: PostgreSQL + InfluxDB.. 20

Real-Time Communication: NestJS WebSocket Gateway...20
Authentication: OAuth 2.0 + JWT... 20

Services Contracts... 20
Architecture Requirements...41

7. WOW FACTORS…………………………………………………………………………….50

1 Introduction

1.1 Purpose of the Document
The purpose of this document is to define the user stories, use cases, functional and
non-functional requirements for the ELO Learning platform. It outlines the objectives
of the system, describes the features and interactions expected from users, and sets
the foundation for system design and development. This document serves as a point
of reference for our development team, project stakeholders, and any future
maintenance efforts.

1.2 Scope of the System
ELO Learning is a gamified math app designed to help students from Grade 8 to first-year
university level improve their mathematical proficiency. Using an ELO-based rating system
inspired by competitive games, the platform matches students with questions that reflect
their skill level.

Students begin by filling in their profile and completing a baseline test, which dynamically
adjusts in difficulty using a decision tree structure. Based on their performance, the system
assigns them an initial ELO score. The platform includes features such as secure user
authentication, gamification elements (badges, leaderboards), and personalised analytics to
promote engagement and continuous learning.

1.3 Intended Audience

This document is intended for:

●​ Developers and Designers: To understand the system functionality and implement
the design accordingly.

●​ Project Stakeholders (Proking Solutions): To ensure the platform meets business
and user goals.

●​ COS 301 Supervisors and Evaluators: To assess the completeness and feasibility
of the project.

●​ Testers: To develop test plans and verify the system against requirements.
●​ Future Maintenance Teams: To provide a clear reference for enhancements or

troubleshooting.

2. User Stories
The user stories are discussed from 2 different perspectives, that of students, and general
users.

1. Students (Primary Users)

Grade 8 to first-year university students.

1. As a student, I want to sign up and create my profile by providing my personal (name,
surname, username, email address) and academic details (age, grade, and confidence
level) so that the platform can tailor the experience to my level.

2. As a student, I want the ELO algorithm to balance my rating based on matches I play..

3. As a student, I want to answer questions using a math keyboard so that I can input
notation like fractions and exponents correctly.

4. As a student, I want to view my current ELO rating and performance stats (such as
accuracy and progress over time) so that I can track my improvement.

5. As a student, I want to choose between different game modes– Ranked Matches, Practice
Rounds, and Single player Rounds– so that I can learn in a way that suits my goal (be it to
progress or speed).

6. As a student, I want to solve math problems in Ranked Matches based on my ELO so that
I can improve my rating and feel challenged.

7. As a student, I want to enter Practice mode with questions at my current level so that I can
improve at my own pace.

8. As a student, I want to attempt Single player matches where I solve as many questions as
possible under a time limit so that I can sharpen my speed and accuracy.

9. As a student, I want to view a full memorandum (correction and explanation) for each
practice question at the end so that I can learn from my mistakes.

10. As a student, I want to retake problems I previously got wrong so that I can reinforce
learning and improve on my weaknesses.

11. As a student, I want to earn badges and rewards as I complete goals and milestones so
that I stay motivated.

12. As a student, I want to earn XP for correctly solving questions so that I feel rewarded for
my effort.

13. As a student, I want to appear on a leaderboard ranked by XP, so that I can compare
myself to others and engage in healthy competition.

14. As a student, I want to access the platform on both my phone and desktop so that I can
practice anytime, anywhere.

2. System

Adaptive Testing & ELO Calculation

2. As the system, I want to assign difficulty levels to questions from 1 to 10 so that I can
measure user performance accurately.

4. As the system, I want to update a student’s ELO rating after each problem submission
(especially in ranked mode) so that future challenges reflect their current skill level.

5. As the system, I want to select problems based on a student's ELO and topic history so
that they receive appropriate and varied challenges.

6. As the system, I want to adapt question difficulty dynamically based on recent
performance trends so that the challenge remains balanced.

7. As the system, I want to store and track each student’s ELO history over time so that
trends and improvement can be visualized.

Submission Evaluation & Feedback

8. As the system, I want to parse and evaluate math expressions submitted in LaTeX format
so that I can accurately assess correctness.

9. As the system, I want to provide immediate visual feedback (correct/incorrect, color
indicators) after a submission so that students can learn effectively.

10. As the system, I want to suggest short tutorials or hints when a student fails a problem
multiple times so that they don’t feel stuck.

11. As the system, I want to recommend a review topic when a student repeatedly struggles
in a specific area so that they can focus their improvement.

Tracking & Analytics

12. As the system, I want to log every problem attempt with metadata (time taken, number of
attempts, type of answer) so that analytics remain comprehensive.

13. As the system, I want to track the time of day and session duration so that I can
optionally suggest breaks when students seem fatigued (wellness feature).

Leaderboard and Abuse Prevention

14. As the system, I want to update the leaderboard in real-time when a user’s XP/ELO
changes so that rankings are always current.

15. As the system, I want to detect abnormal behavior (e.g, spamming submissions, solving
too fast) so that abuse or misuse of the platform can be flagged.

Notifications & Engagement

16. As the system, I want to send push notifications reminding students to complete their
daily lesson so that they stay consistent in their learning routine.

17. As the system, I want to notify students when new badges or achievements are unlocked
so that they feel recognised and motivated.

18. As the system, I want to remind students if they haven't logged in for several days so that
they do not fall behind or forget to practice.

19. As the system, I want to notify students when their leaderboard position changes so that
they stay engaged and motivated to keep progressing.

3. Admin (Developers and Stakeholders)

Content & Question Management

1. As an admin, I want to upload, manage, and categorize math problems by topic and
difficulty so that the problem pool stays educational, relevant, and diverse.

2. As an admin, I want to update or delete outdated questions so that users always receive
accurate content.

3. System Requirements

FR1: User Registration and Profile Creation

●​ FR1.1 The system must provide a registration form for students to input name,
surname, age, email address, grade and math confidence level.

○​ FR1.1.1: If a username that is already selected is chosen, prevent the student
from selecting that username.

●​ FR1.2 The system shall validate and securely store user information.
●​ FR1.3 The system shall allow students to edit their profile data after registration.

FR2: Secure Login and Authentication

●​ FR2.1 The system shall allow students to log in using their username and password.
●​ FR2.2 The system shall implement password hashing and secure authentication

mechanisms.
●​ FR2.3 The system shall provide error messages for incorrect login attempts and

allow password resets.

●​ FR3.1 The system shall show one math question at a time to reduce cognitive load.
●​ FR3.2 The system shall determine whether to branch left (easier) or right (harder) in

the decision tree based on correctness of the student's answer.
●​ FR3.3 The system shall use question difficulty levels ranging from 1 to 10.
●​ FR3.4 The system shall compute an initial ELO rating based on consistent

performance at a given level.

FR4: Game Modes and Math Practice

●​ FR4.1 The system shall allow students to choose from three modes: Ranked
Matches, Practice Rounds, and Single player Rounds.

●​ FR4.2 The system shall deliver Ranked Match questions based on the user’s current
ELO.

●​ FR4.3 The system shall limit Single Rounds to a predefined time and track the
number of correct answers within that period.

●​ FR4.4 The system shall update the student’s ELO rating after every ranked match.
●​ FR4.5 The system shall allow students to retake previously incorrect problems from

their practice history.

FR5: Math Keyboard Input

●​ FR5.1 The system shall include a math keyboard supporting symbols like fractions,
exponents, square roots, and Greek letters.

FR6: Feedback and Memorandum

●​ FR6.1 The system shall display immediate visual feedback (correct/incorrect) after
every answer.

●​ FR6.2 The system shall display a full memorandum or worked solution after each
practice or test session.

●​ FR6.3 The system shall recommend review topics or hints when a student struggles
repeatedly.​

FR7: XP, Badges, and Leaderboards

●​ FR7.1 The system shall award XP for correct answers in Practice and Single player
Rounds.

●​ FR7.2 The system shall assign badges for milestone achievements.
●​ FR7.3 The system shall maintain a real-time leaderboard ranked by XP.​

FR7.4 The system shall allow filtering of the leaderboard by ELO ranking.

FR8: ELO & Performance Analytics

●​ FR8.1 The system shall display the student’s current ELO rating and progress chart
over time.

●​ FR8.2 The system shall store a history of ELO changes and match data.
●​ FR8.3 The system shall allow students to view accuracy, number of questions

attempted, and topic mastery.​

FR9: Push Notifications

●​ FR9.1 The system shall notify students to complete their daily lesson or activity.
●​ FR9.2 The system shall notify students when badges or achievements are unlocked.
●​ FR9.3 The system shall notify inactive users after a predefined period.
●​ FR9.4 The system shall notify users when their leaderboard rank changes.
●​ FR9.5 The system shall notify students when their account is deleted or deactivated

by admin.​

FR10: User Accessibility

●​ FR10.1 The system shall be accessible on desktop and mobile browsers.
●​ FR10.2 The interface shall be responsive and support input from touchscreens and

keyboards.​

FR11: Admin – Content & Question Management

●​ FR11.1 The system shall allow admins to upload, edit, delete, and categorize math
problems by topic and difficulty.

4. Use Cases

5. Domain Model

6. Math Sections

Grade 8:

Paper 1 Paper 2

Fractions Construction of Geometric Figures

Integers Geometry of 2D Shapes

Exponents Geometry of Straight Lines

Numeric and Geometric Patterns

Functions and Relationships

Algebraic Expressions

Algebraic Equations

Grade 9:

Grade 10:

Paper 1 Paper 2

Fractions Construction of Geometric Figures

Integers Geometry of 2D Shapes

Exponents Geometry of Straight Lines

Numeric and Geometric Patterns Pythagoras' Theorem

Paper 1 Paper 2

Fractions Construction of Geometric Figures

Integers Geometry of 2D Shapes

Exponents Geometry of Straight Lines

Numeric and Geometric Patterns Pythagoras' Theorem

Functions and Relationships Area and Perimeter of 2D Shapes

Algebraic Expressions

Equations

Functions and Relationships Area and Perimeter of 2D Shapes

Algebraic Expressions

Equations

Grade 11 + 12:

Paper 1 Paper 2

Algebra & equations Statistics

Patterns & Sequences Analytical geometry

Financial Mathematics Trigonometry

Functions and Graphs Euclidean geometry (Circle Geometry)

Probability Measurement

Introduction to Calculus

Technology Choices

Frontend Development: React.js and Next.js (PWA)

Alternatives Considered:

1.​ Vue.js & Nuxt.js: Strong SSR capabilities and gentle learning curve
2.​ SvelteKit: Excellent performance with minimal bundle size
3.​ React.js & Next.js: (Selected) Mature ecosystem with comprehensive PWA support

Selection Justification: React + Next.js provides the best balance of development velocity,
PWA capabilities, and ecosystem support for complex mathematical interfaces. The mature
component ecosystem includes specialized math rendering libraries that directly support our
usability quality requirements.

Backend Development: Express.js

Alternatives Considered:

1.​ Express.js: (Selected) Lightweight, flexible Node.js framework with extensive
middleware ecosystem

2.​ NestJS: Structured TypeScript framework with built-in dependency injection and
testing

3.​ Spring Boot (Java): Enterprise-grade framework with comprehensive features but
steeper learning curve

Selection Justification: Express.js was chosen for its simplicity and rapid development
capabilities, which align perfectly with our project timeline and team expertise. While NestJS
offers more structure through its opinionated architecture, Express.js provides the flexibility
needed to implement our SOA pattern without the overhead of learning a complex
framework. The extensive middleware ecosystem allows us to add exactly the features we
need for authentication, WebSocket support, and API routing without unnecessary
complexity. This choice directly supports our performance quality requirements through
minimal overhead and our maintainability requirements through the team's existing familiarity
with Express.js patterns. The framework's lightweight nature also supports our scalability
goals by reducing resource consumption per service instance.

Database Strategy: PostgreSQL + InfluxDB

Alternatives Considered:

1.​ MongoDB + PostgreSQL: NoSQL flexibility with relational consistency
2.​ MySQL + Prometheus: Standard relational with monitoring-focused time-series
3.​ PostgreSQL + InfluxDB: (Selected) Robust relational with specialized time-series

capabilities

Selection Justification: PostgreSQL provides the ACID compliance needed for user data
and ELO calculations, while InfluxDB offers optimized time-series storage for learning
analytics. This combination directly supports our performance and scalability quality
requirements.

Real-Time Communication: NestJS WebSocket Gateway

Alternatives Considered:

1.​ Socket.IO (standalone): Feature-rich but requires additional integration overhead
2.​ Firebase Realtime Database: Easy setup but vendor lock-in concerns
3.​ NestJS WebSocket Gateway: (Selected) Integrated with existing backend

architecture

Selection Justification: Native integration with our SOA services eliminates additional
complexity while providing the <300ms latency required by our performance quality
requirements.

Authentication: OAuth 2.0 + JWT

Alternatives Considered:

1.​ Firebase Auth: Simplified implementation but vendor dependency
2.​ Session-based Auth: Traditional approach but limited scalability
3.​ OAuth 2.0 + JWT: (Selected) Industry standard with scalable token-based

architecture

Selection Justification: Provides the security requirements while supporting our SOA
pattern's stateless service communication. The standard approach ensures long-term
maintainability and compliance with security best practices.

Services Contracts

Establishing contracts between
frontend and backend

Key terms

Frontend Also known as the React PWA application.

Backend This includes API and Database, and any layers in between

DB Database

https://docs.google.com/document/d/1VrDDmFJkHTyw__CENO48pkmnlwMOj7_4/edit#heading=h.2q4b31g2wndu

Users​ 3

User object:​ 3

GET /users​ 3

URL Params​ 3

Data Params​ 3

Headers​ 3

Success Response​ 3

GET /user:id​ 4

URL Params​ 4

Data Params​ 4

Headers​ 4

Success Response​ 4

Error Response:​ 4

GET /users/:id/achievements​ 5

URL Params​ 5

Data Params​ 5

Headers​ 5

Success Response​ 5

Error Response:​ 5

POST /user/:id/xp​ 6

URL Params​ 6

Data Params​ 6

Headers​ 6

Success Response​ 6

Error Response:​ 6

Questions​ 7

Question object:​ 7

GET /questions​ 7

URL Params​ 7

Data Params​ 7

Headers​ 7

Success Response​ 7

GET /question/:level​ 8

URL Params​ 8

Data Params​ 8

Headers​ 8

Success Response​ 8

Error Response:​ 8

GET /question/:id/answer​ 9

URL Params​ 9

Data Params​ 9

Headers​ 9

Success Response​ 9

Error Response:​ 9

GET /questions/topic​ 10

URL Params​ 10

Data Params​ 10

Headers​ 10

Success Response​ 10

Contents​ 10

GET /questions/level/topic​ 11

URL Params​ 11

Headers​ 11

Data Params​ 11

Success Response​ 11

POST /question/:id/answer​ 12

URL Params​ 12

Data Params​ 12

Headers​ 12

Success Response​ 12

Contents

Practice Endpoints

 GET/practice

URL Params​ 12

Data Params​ 12

Headers​ 12

Success Response​ 12

Contents​

Answer Endpoints

 POST /question/:id/answer​ 12

URL Params​ 12

Data Params​ 12

Headers​ 12

Success Response​ 12

Contents

XP and Multiplayer Endpoints

 POST /question/:id/answer​ 12

URL Params​ 12

Data Params​ 12

Headers​ 12

Success Response​ 12

Contents​ 12

Users
User object:

{
 ​ id: integer
 ​ name: string

surname: string
username: string​
email: string
password: string
currentLevel: integer
joinDate: date
xp: float

}

GET /users
Returns all users in the database.

URL Params
None

Data Params
None

Headers
Content-Type: application/json

Success Response
Code: 200

Contents
{
 users: [
 {<user_object>},
 {<user_object>},
 {<user_object>}
]
}

GET /user:id
Returns the specified user.

URL Params
Required: id=[integer]

Data Params
None

Headers
Content-Type: application/json

Authorization: Bearer <OAuth Token>

Success Response
Code: 200

Contents
{ <user_object> }

Error Response:
Code: 404

Content:
{ error : "User doesn't exist" }

OR

Code: 401

Content:
{ error : error : "You are unauthorized to make this request." }

GET /users/:id/achievements
Returns all achievements specific to a user.

URL Params
Required: id=[integer]

Data Params
None

Headers
Content-Type: application/json

Authorization: Bearer <OAuth Token>

Success Response
Code: 200

Content:
{
 achievements: [
 {<achievement_object>},
 {<achievement_object>},
 {<achievement_object>}
]
}

Error Response:
Code: 404

Content:
{ error : "User doesn't exist" }

OR

Code: 401

Content:
{ error : error : "You are unauthorized to make this request." }

POST /user/:id/xp
Updates the user’s xp.

URL Params
Required: id=[integer]

Data Params
{

​ id: integer,

​ xp: float

}

Headers
Content-Type: application/json

Authorization: Bearer <OAuth Token>

Success Response
Code: 200

Content:
{ <user_object> }

Error Response:
Code: 404

Content:
{ error : "User doesn't exist" }

OR

Code: 401

Content:
{ error : error : "You are unauthorized to make this request." }

Questions
Question object:

{
 ​ Q_id: integer
 ​ topic: string

difficulty: string
level: integer
questionText: string​
xpGain: float

}

GET /questions
Gets all the questions from the database.

URL Params
None

Data Params
None

Headers
Content-Type: application/json

Success Response
Code: 200

Contents
{
 questions: [
 {<question_object>},
 {<question_object>},
 {<question_object>}
]
}

GET /question/:level
Gets all questions based on the input level.

URL Params
Required: level=[integer]

Data Params
None

Headers
Content-Type: application/json

Authorization: Bearer <OAuth Token>

Success Response
Code: 200

Contents
{
 questions: [
 {<question_object>},
 {<question_object>},
 {<question_object>}
]
}

Error Response:
Code: 404

Content:
{ error : "Level doesn’t exist" }

OR

Code: 401

Content:
{ error : error : "You are unauthorized to make this request." }

GET /question/:id/answer
Gets the answer to a specific question.

URL Params
Required: Q_id=[integer]

Data Params
None

Headers
Content-Type: application/json

Authorization: Bearer <OAuth Token>

Success Response
Code: 200

Contents
{
 answer: [
 {<answer_object>},
]
}

Error Response:
Code: 404

Content:
{ error : "Question doesn't exist" }

OR

Code: 401

Content:
{ error : error : "You are unauthorized to make this request." }

GET /questions/topic
Returns all of the questions for that specific topic

URL Params
Required: topic=“topic_tag”

Data Params
None

Headers
Content-Type: application/json

Success Response
Code: 200

Contents
{
 questions: [
 {<question_object>},
 {<question_object>},
 {<question_object>}
]
}

GET /questions/level/topic
Get all of the questions based on their level and their topic.

URL Params
Required: level=[integer]

Required: topic=“topic_tag”

Headers
Content-Type: application/json

Data Params
{
 answer: string
}

Success Response
Code: 200

Contents
{
 result: boolean
}

POST /question/:id/answer
Send the question’s answer through to be checked if correct.

URL Params
Required: Q_id=[integer]

Data Params
{
 question: [
 {<question_object>},
 {<question_object>},
 {<question_object>}
]
}

Headers
Content-Type: application/json

Success Response
Code: 200

Contents
{
 questions: [
 {<question_object>},
 {<question_object>},
 {<question_object>}
]
}

GET /questionsById/:id

Fetches a specific question by its ID.

URL Params​
 Required: id=[integer]

Headers​
 Content-Type: application/json

Success Response​
 Code: 200​
 Contents:

{

 "question": { <question_object> }

}

GET /answers/:id

Returns all answers for a specific question.

URL Params​
 Required: id=[integer]

Headers​
 Content-Type: application/json

Success Response​
 Code: 200​
 Contents:

{

 "answers": [

 { <answer_object> },

 { <answer_object> }

]

}

Practice Endpoints

GET /practice

Returns 10 practice questions and their answers.

Headers​
 Content-Type: application/json

Success Response​
 Code: 200​
 Contents:

{

 "questions": [

 { <question_object_with_answers> },

 { <question_object_with_answers> }

]

}

GET /practice/type/:questionType

Returns 10 questions of a specific type and their answers.

URL Params​
 Required: questionType=[string] (e.g., "multiple-choice" or "true-false")

Headers​
 Content-Type: application/json

Success Response​
 Code: 200​
 Contents:

{

 "questions": [

 { <question_object_with_answers> },

 { <question_object_with_answers> }

]

}

Answer Endpoints

POST /submit-answer

Checks if the selected answer is correct and awards XP.

Headers​
 Content-Type: application/json

Data Params

{

 "questionId": [integer],

 "selectedAnswer": "[string]"

}

Success Response​
 Code: 200​
 Contents:

{

 "correct": true,

 "xpAwarded": [integer]

}

POST /question/:id/submit

Validates user answers to specific questions and awards XP.

URL Params​
 Required: id=[integer]

Headers​
 Content-Type: application/json

Data Params

{

 "answers": ["[string]", "[string]"]

}

Success Response​
 Code: 200​
 Contents:

{

 "results": [

 { "correct": true, "xp": 10 },

 { "correct": false, "xp": 0 }

]

}

POST /validate-answer

Validates if math answers match.

Headers​
 Content-Type: application/json

Data Params

{

 "expected": "[string]",

 "submitted": "[string]"

}

Success Response​
 Code: 200​
 Contents:

{

 "isValid": true

}

POST /quick-validate

Performs quick validation of math answers.

Headers​
 Content-Type: application/json

Data Params

{

 "expected": "[string]",

 "input": "[string]"

}

Success Response​
 Code: 200​
 Contents:

{

 "valid": true

}

POST /validate-expression

Checks if a math expression is valid.

Headers​
 Content-Type: application/json

Data Params

{

 "expression": "[string]"

}

Success Response​
 Code: 200​
 Contents:

{

 "valid": true

}

XP and Multiplayer Endpoints

POST /singleplayer

Handles XP calculations for a single player answering a question.

Headers​
 Content-Type: application/json

Data Params

{

 "userId": [integer],

 "questionId": [integer],

 "correct": true

}

Success Response​
 Code: 200​
 Contents:

{

 "xpAwarded": 10,

 "newTotalXP": 150

}

POST /multiplayer

Handles XP and match processing for multiplayer mode.

Headers​
 Content-Type: application/json

Data Params

{

 "player1": {

 "userId": [integer],

 "score": [integer]

 },

 "player2": {

 "userId": [integer],

 "score": [integer]

 },

 "questionId": [integer]

}

Success Response​
 Code: 200​
 Contents:

{

 "matchResult": "player1_wins",

 "xpUpdates": {

 "player1": 20,

 "player2": 5

 }

}

Architecture Requirements

ELO Learning - Architectural
Requirements v2

Quality Requirements

QR1: Usability

●​ QR1.1 The system shall have a responsive UI that adjusts seamlessly across
desktop, tablet, and mobile devices with 100% viewport compatibility testing.

●​ QR1.2 The interface shall adhere to WCAG 2.1 AA accessibility standards, including
keyboard navigation and color contrast compliance with a minimum contrast ratio of
4.5:1.

●​ QR1.3 The platform shall provide visual cues (color indicators, feedback messages)
to enhance user understanding with a measurable task completion rate of >85%.

●​ QR1.4 Onboarding tutorials shall achieve >90% completion rate and reduce
time-to-first-successful-problem-attempt to under 3 minutes.

SOA Support for Usability: Our service-oriented architecture directly enhances usability
through service specialization and loose coupling. The User Profile Service maintains
consistent user preferences and progress across all interactions, while the Math Problem
Service ensures mathematical content renders uniformly regardless of which frontend
component requests it. Service interfaces provide standardized response formats that
enable consistent user experience patterns across different platform areas. The separation
of concerns allows the frontend to focus entirely on user experience optimization without
being constrained by backend complexity, while services can evolve their internal
implementations to better support usability requirements without affecting other system
components

QR2: Performance

●​ QR2.1 The system shall maintain a median page load time of under 2 seconds for all
major views measured via synthetic monitoring.

●​ QR2.2 The system shall support real-time updates using WebSockets with latency
<300ms under normal load (up to 1,000 concurrent users).

●​ QR2.3 Cached content shall reduce server requests by 70% for static resources and
frequently accessed data.

SOA Support for Performance: The service-oriented architecture enables performance
optimization through independent service scaling and specialized resource management.
The Stats/Leaderboard Service can be scaled independently during peak usage periods
without affecting the Auth Service or Math Problem Service performance. Service-level
caching strategies allow each service to optimize its data access patterns—the Math

https://docs.google.com/document/d/1QqYa0kwkN3fPhvyjZu5W3-cpX-PQKAzK/edit?usp=sharing&ouid=105197813326401402258&rtpof=true&sd=true

Problem Service implements aggressive caching for frequently accessed problems, while
the Matchmaking Service caches ELO calculations to reduce computational overhead. The
loose coupling between services prevents performance bottlenecks in one service from
cascading to others, and service-specific database optimization ensures that each service
can tune its data access patterns for optimal performance without constraints from other
system components.

QR3: Scalability

●​ QR3.1 The backend infrastructure shall support horizontal scaling to handle at least
10,000 concurrent users without >10% performance degradation.

●​ QR3.2 Services shall be independently scalable based on load patterns with
automatic scaling triggers at 70% resource utilization.

●​ QR3.3 Load balancing shall distribute requests with <5% variance across available
service instances.

SOA Support for Scalability: Service-oriented architecture provides exceptional scalability
advantages through independent service scaling and resource allocation. Each service can
be scaled based on its specific usage patterns—during peak learning hours, the
Matchmaking Service may require more instances to handle problem assignment requests,
while the Analytics Service can maintain minimal resources until batch processing periods.
The service boundaries prevent resource contention, allowing high-demand services to scale
without affecting the resource allocation of stable services like the Auth Service.
Service-level load balancing ensures that scaling decisions for one service don't impact the
availability or performance of other services, and the shared database approach allows
services to scale their computational resources independently while maintaining data
consistency across the platform.

QR4: Reliability

●​ QR4.1 The system shall maintain 99.5% uptime per month, excluding planned
maintenance windows.

●​ QR4.2 The system shall recover from service failure within 60 seconds using health
checks and circuit breaker patterns.

●​ QR4.3 Daily automated backups shall maintain 99.9% data integrity with point-in-time
recovery capability.

SOA Support for Reliability: The service-oriented architecture enhances system reliability
through fault isolation and service independence. When individual services experience
issues, the failure is contained within service boundaries—if the Analytics Service
encounters problems, students can continue learning through the Math Problem Service and
Matchmaking Service without interruption. Each service implements its own health
monitoring and recovery mechanisms, allowing targeted recovery procedures that don't
require full system restarts. The service interfaces provide standardized error handling that
enables graceful degradation—if the Leaderboard Service is temporarily unavailable, the
core learning functionality continues while users receive appropriate feedback about
temporarily unavailable features. Service-level backup strategies ensure that critical services
like Auth and User Profile have priority recovery procedures, while less critical services can
be restored without impacting core educational functionality.

QR5: Security

●​ QR5.1 All HTTP requests shall be transmitted over HTTPS using TLS 1.3+.
●​ QR5.2 Authentication shall follow OAuth 2.0 + JWT standard with 1-hour access

tokens and 7-day refresh tokens.
●​ QR5.3 User passwords shall be hashed using bcrypt with minimum 12 salt rounds.
●​ QR5.4 All API endpoints shall enforce role-based access control with Bearer Token

authorization.
●​ QR5.5 POPIA compliance through user data management capabilities and consent

mechanisms.

SOA Support for Security: Service-oriented architecture provides robust security
advantages through service-level access control and security boundary enforcement. The
Auth Service acts as a centralized security authority, issuing JWT tokens that other services
validate independently, creating a consistent security model across all platform interactions.
Each service implements role-based access control tailored to its specific domain—the Math
Problem Service restricts problem editing to administrators while allowing read access to
authenticated students, and the User Profile Service ensures users can only access their
own progress data. Inter-service communication follows secure protocols with
service-to-service authentication, preventing unauthorized access between internal
components. The service boundaries create security compartmentalization where a potential
vulnerability in one service doesn't automatically compromise other services, and
service-specific security auditing enables targeted security monitoring and incident response
procedures.

QR6: Maintainability

●​ QR6.1 All backend services shall follow consistent NestJS
Controller-Service-Repository pattern.

●​ QR6.2 Code coverage shall maintain a minimum 80% measured via Jest testing
framework.

●​ QR6.3 JSDoc documentation shall be provided for all public functions and modules.

SOA Support for Maintainability: Service-oriented architecture provides exceptional
maintainability advantages through clear separation of concerns and modular development
practices. Each service maintains its own codebase with well-defined boundaries, allowing
developers to understand, modify, and extend individual services without needing to
comprehend the entire system complexity. When modifications are required for the ELO
matching algorithm, developers can focus exclusively on the Matchmaking Service without
worrying about unintended effects on the Auth Service or User Profile Service. The service
interfaces act as contracts that prevent breaking changes from propagating across service
boundaries, enabling confident refactoring within individual services.

Service-level maintainability is further enhanced through independent deployment and
versioning capabilities. Each service can evolve its internal implementation, adopt new
libraries, or optimize its algorithms without coordinating changes across the entire platform.
The shared database approach, while creating some coupling, actually improves

maintainability for educational platforms by ensuring data consistency and simplifying
backup and recovery procedures. Service-specific documentation and testing strategies
mean that maintenance work can be performed by developers who specialize in particular
domains—authentication experts can maintain the Auth Service while education specialists
focus on the Math Problem Service, leading to higher quality maintenance and more
effective bug resolution.

QR7: Testability

●​ QR7.1 Backend services shall include unit and integration tests with >80% code
coverage.

●​ QR7.2 E2E tests shall cover critical user journeys using Cypress with >95% test pass
rate.

●​ QR7.3 CI pipelines shall fail builds when coverage drops below thresholds or critical
tests fail.

SOA Support for Testability: Service-oriented architecture significantly enhances testability
through service isolation and interface standardization. Each service can be unit tested
independently using mock implementations of dependent services, enabling parallel test
development and faster test execution. Service interface testing validates API contracts
between services, ensuring that changes to one service don't break dependent services
without explicit interface versioning. The architecture supports comprehensive integration
testing strategies including service-to-service contract testing, where each service interface
is tested against defined contracts to ensure compatibility. Mock service implementations
allow isolated testing of individual services without requiring the full system to be operational,
enabling efficient development and debugging cycles.

Service Testing Strategies: Our SOA implementation employs multiple testing layers
tailored to service-oriented concerns. Service Interface Testing validates that each service
correctly implements its API contracts and handles edge cases appropriately. Mock Service
Strategy provides lightweight service doubles for unit testing, allowing developers to test
service logic without external dependencies. API Contract Testing between services
ensures backward compatibility and validates that service interfaces meet their
specifications. Service Integration Testing verifies that services work correctly together,
including authentication flows, data consistency, and error handling across service
boundaries. End-to-End Service Chain Testing validates complete user workflows that
span multiple services, ensuring that the service orchestration delivers expected business
outcomes.

Architectural Design Strategy
For ELO Learning, we have chosen a design strategy based on quality requirements as
our primary architectural approach. This strategy prioritizes the systematic achievement of
our most critical quality attributes—usability, performance, and scalability—which directly
impact the educational effectiveness of our platform.

Justification for Quality-Driven Design Strategy

The quality-driven approach is most suitable for ELO Learning because educational
platforms must excel in user experience and performance to maintain student engagement.
Unlike purely functional-driven design, this strategy ensures that architectural decisions
directly support measurable learning outcomes. The strategy involves:

1.​ Quality Attribute Scenarios: Each quality requirement is expressed as testable
scenarios that drive architectural decisions

2.​ Tactic Selection: Specific architectural tactics are chosen to address quality attribute
requirements systematically

3.​ Pattern Application: Architectural patterns are selected based on their ability to
satisfy our prioritized quality attributes

4.​ Iterative Refinement: The architecture evolves through continuous measurement
against quality targets

Architectural Strategies
Our architectural strategies directly address our quality requirements through specific tactics
and techniques:

Performance Strategy: Asynchronous Processing and Caching

●​ Tactics: Manage resources, increase available resources, reduce overhead
●​ Implementation: WebSocket-based real-time updates, Redis caching layer, CDN for

static assets
●​ Quality Target: <2 second page load times, <300ms real-time update latency

Scalability Strategy: Horizontal Scale-out with Load Distribution

●​ Tactics: Multiple copies of data, multiple copies of computation
●​ Implementation: Container-based service deployment, horizontal pod autoscaling,

database read replicas
●​ Quality Target: Support 10,000+ concurrent users with linear scaling

Usability Strategy: Real-time UI Responsiveness

●​ Tactics: Maintain task model, maintain system model, maintain user model
●​ Implementation: Progressive Web App architecture, responsive design patterns,

accessibility-first development
●​ Quality Target: >85% task completion rate, <3 minute onboarding time

Security Strategy: Defense in Depth with Token-based Authentication

●​ Tactics: Authenticate users, authorize users, maintain data confidentiality
●​ Implementation: OAuth 2.0 + JWT, HTTPS/TLS 1.3, RBAC, input validation
●​ Quality Target: Zero security incidents, full POPIA compliance

Availability Strategy: Fault Detection and Recovery

●​ Tactics: Fault detection, fault recovery, fault prevention
●​ Implementation: Health checks, circuit breakers, automated failover, backup

systems
●​ Quality Target: 99.5% uptime with <60 second recovery time

Architectural Patterns

Primary Pattern: Service-Oriented Architecture (SOA)

ELO Learning employs a Service-Oriented Architecture (SOA) pattern as its primary
architectural approach. This represents an evolution from our initial microservices
consideration, adapted to better suit our project's specific constraints and requirements.

Migration from Microservices to SOA: Justification

Initially, we considered a pure microservices architecture for its benefits of independent
deployment and technology diversity. However, after careful analysis of our project
constraints and team capabilities, we transitioned to SOA for the following reasons:

Complexity Management: Microservices proved too complex for our team size and
timeline. The overhead of managing independent deployments, service discovery, distributed
monitoring, and inter-service communication protocols would have consumed significant
development time better spent on core educational features.

Resource Constraints: True microservices require substantial DevOps infrastructure and
monitoring capabilities. Our three-component Demo 2 requirement and limited infrastructure
budget made SOA's shared deployment model more practical.

Integration Simplicity: SOA's shared database approach and simplified inter-service
communication patterns reduce the "distributed system tax" that microservices impose,
allowing us to focus on educational functionality rather than distributed systems engineering.

Team Expertise: Our team's existing experience with monolithic and service-based patterns
made SOA a more natural progression than the leap to full microservices architecture.

SOA Implementation Details

Our SOA pattern provides the modularity benefits we need while maintaining manageable
complexity:

Service Characteristics:

●​ Each service is modular and focused on a specific domain (Auth, Matchmaking,
Problem Management, etc.)

●​ Services communicate through well-defined REST APIs and WebSocket connections
●​ Services share database access but maintain clear domain boundaries

●​ Services are deployed together but can be scaled independently through container
orchestration

Service Inventory:

1.​ Auth Service: Handles user registration, login, JWT generation, and OAuth 2.0 flow
2.​ Matchmaking Service: Implements ELO-based algorithm for problem difficulty

matching
3.​ Math Problem Service: Manages problem storage, retrieval, and metadata
4.​ Stats/Leaderboard Service: Computes rankings and delivers leaderboard data
5.​ User Profile Service: Manages personal data, progress tracking, and achievements
6.​ Analytics Service: Logs interaction metrics and performance data (planned)

Benefits Realized

●​ Simplified Integration: Shared database access reduces inter-service
communication complexity

●​ Manageable Deployment: Services deploy together while maintaining logical
separation

●​ Development Velocity: Team can work on different services without complex
coordination

●​ Quality Assurance: Easier to implement comprehensive testing across service
boundaries

Tradeoffs Accepted

●​ Less Independence: Services are not fully independent, requiring some
coordination for changes

●​ Shared Database: Potential coupling through shared data schemas
●​ Deployment Coupling: Services deploy together, reducing deployment flexibility

compared to microservices

Secondary Pattern: Model-View-Controller (MVC) for Frontend

The frontend implementation follows the Model-View-Controller (MVC) pattern,
implemented through React's component architecture with Next.js:

Model: Application state management through React hooks and context, representing user
data, problem state, and UI state View: React components that render the user interface,
including the custom math keyboard and problem displays​
 Controller: Event handlers and business logic that coordinate between user interactions
and state updates

This pattern supports our usability quality requirements by providing clear separation
between presentation and logic, enabling consistent UI behavior and easier maintenance of
the complex mathematical input interfaces.

Supporting Patterns

Observer Pattern: Implemented through WebSocket connections for real-time leaderboard
updates and progress notifications. This pattern directly supports our performance quality
requirements for <300ms real-time updates.

Strategy Pattern: Used in the matchmaking service to allow different ELO calculation
strategies and problem selection algorithms. This supports future extensibility without
architectural changes.

Service Layer Pattern: Consistently applied across all backend services using NestJS's
Controller-Service-Repository structure, supporting our maintainability quality requirements.

Mediator Pattern: Applied through our API Gateway pattern, which coordinates
communication between frontend and backend services while providing security and
monitoring capabilities.

Architectural Constraints

Technical Constraints

●​ Container Deployment: All services must be containerized using Docker for
consistent deployment across environments

●​ Cloud Platform: System must deploy to either AWS or Azure using
infrastructure-as-code principles

●​ Database Technology: Must use PostgreSQL for relational data and InfluxDB for
time-series analytics data

●​ Security Standards: Must implement HTTPS/TLS 1.3, OAuth 2.0 + JWT
authentication, and POPIA compliance

Project Constraints

●​ Demo Timeline: Three components must be fully implemented by June 27, 2025,
limiting architectural complexity

●​ Team Size: Architecture must be manageable by a small development team without
dedicated DevOps engineers

●​ Budget Limitations: Infrastructure costs must remain within educational project
constraints

Regulatory Constraints

●​ POPIA Compliance: User data handling must comply with South African privacy
regulations

●​ Educational Standards: Math content and progress tracking must support
pedagogical best practices

●​ Accessibility Requirements: Interface must meet WCAG 2.1 AA standards for
inclusive education

Integration Constraints

●​ Math Input Complexity: Architecture must support complex mathematical notation
input and rendering

●​ Real-time Requirements: Must support WebSocket connections for immediate
feedback and collaborative features

●​ Progressive Web App: Must function as PWA for mobile accessibility without native
app development

Technology Choices

Frontend Development: React.js and Next.js (PWA)

Alternatives Considered:

1.​ Vue.js & Nuxt.js: Strong SSR capabilities and gentle learning curve
2.​ SvelteKit: Excellent performance with minimal bundle size
3.​ React.js & Next.js: (Selected) Mature ecosystem with comprehensive PWA support

Selection Justification: React + Next.js provides the best balance of development velocity,
PWA capabilities, and ecosystem support for complex mathematical interfaces. The mature
component ecosystem includes specialized math rendering libraries that directly support our
usability quality requirements.

Backend Development: Express.js

Alternatives Considered:

1.​ Express.js: (Selected) Lightweight, flexible Node.js framework with extensive
middleware ecosystem

2.​ NestJS: Structured TypeScript framework with built-in dependency injection and
testing

3.​ Spring Boot (Java): Enterprise-grade framework with comprehensive features but
steeper learning curve

Selection Justification: Express.js was chosen for its simplicity and rapid development
capabilities, which align perfectly with our project timeline and team expertise. While NestJS
offers more structure through its opinionated architecture, Express.js provides the flexibility
needed to implement our SOA pattern without the overhead of learning a complex
framework. The extensive middleware ecosystem allows us to add exactly the features we
need for authentication, WebSocket support, and API routing without unnecessary
complexity. This choice directly supports our performance quality requirements through
minimal overhead and our maintainability requirements through the team's existing familiarity
with Express.js patterns. The framework's lightweight nature also supports our scalability
goals by reducing resource consumption per service instance.

Database Strategy: PostgreSQL + InfluxDB

Alternatives Considered:

1.​ MongoDB + PostgreSQL: NoSQL flexibility with relational consistency
2.​ MySQL + Prometheus: Standard relational with monitoring-focused time-series
3.​ PostgreSQL + InfluxDB: (Selected) Robust relational with specialized time-series

capabilities

Selection Justification: PostgreSQL provides the ACID compliance needed for user data
and ELO calculations, while InfluxDB offers optimized time-series storage for learning
analytics. This combination directly supports our performance and scalability quality
requirements.

Real-Time Communication: NestJS WebSocket Gateway

Alternatives Considered:

1.​ Socket.IO (standalone): Feature-rich but requires additional integration overhead
2.​ Firebase Realtime Database: Easy setup but vendor lock-in concerns
3.​ NestJS WebSocket Gateway: (Selected) Integrated with existing backend

architecture

Selection Justification: Native integration with our SOA services eliminates additional
complexity while providing the <300ms latency required by our performance quality
requirements.

Authentication: OAuth 2.0 + JWT

Alternatives Considered:

1.​ Firebase Auth: Simplified implementation but vendor dependency
2.​ Session-based Auth: Traditional approach but limited scalability
3.​ OAuth 2.0 + JWT: (Selected) Industry standard with scalable token-based

architecture

Selection Justification: Provides the security requirements while supporting our SOA
pattern's stateless service communication. The standard approach ensures long-term
maintainability and compliance with security best practices.

Custom Math Keyboard Implementation

Architecture Decision

The custom math keyboard represents a critical architectural component that directly
impacts our highest-priority quality requirement: usability. Rather than relying on external
services or complex integrations, we've architected an integrated solution that provides
seamless mathematical input within our educational platform.

Technology Stack

●​ MathLive: Provides the interactive math keyboard with LaTeX support, enabling
complex mathematical notation input

●​ KaTeX: Handles real-time math rendering with superior performance compared to
MathJax

●​ math.js: Enables backend expression evaluation and automated grading capabilities
●​ React Integration: Custom wrapper components that integrate mathematical input

with our MVC frontend pattern

Architectural Benefits

This integrated approach supports multiple quality requirements simultaneously: it enhances
usability through intuitive math input, improves performance through optimized rendering,
and maintains security through controlled input validation. The architecture ensures that
mathematical notation handling remains consistent across all problem types while supporting
future extensibility for advanced mathematical concepts.

7. WOW Factors!
FR12: Classroom Wars (Gamified Competitions)

FR12.1 The system shall allow teachers to create a "Classroom War" match between groups
of students or entire classes.​
 FR12.2 The system shall automatically match students within a Classroom War based on
similar ELO ratings.​
 FR12.3 The system shall provide real-time progress tracking of each class or group during
the competition.​
 FR12.4 The system shall award bonus XP, badges, and achievements to winners of
Classroom Wars.​
 FR12.5 The system shall provide a leaderboard for Classroom Wars, visible to all
participants.

FR13: Customer Support & Help Desk

FR13.1 The system shall provide an in-app customer support portal accessible from the user
dashboard.​
 FR13.2 The system shall allow students, parents, or teachers to submit support tickets
describing technical or account issues.​
 FR13.3 The system shall allow support staff to view, respond, and resolve tickets within an
admin panel.​
 FR13.4 The system shall notify users via push notifications or email when their ticket status
changes.​
 FR13.5 The system shall provide a searchable FAQ and knowledge base for common
issues.

FR14: AI Assistance & Adaptive Learning

FR14.1 The system shall use AI to recommend personalized practice sets based on student
weaknesses and learning history.​
 FR14.2 The system shall allow students to request AI-generated hints or step-by-step
explanations for difficult problems.​
 FR14.3 The system shall allow AI to detect patterns of repeated mistakes and suggest
targeted review topics.​
 FR14.4 The system shall provide teachers with AI-generated analytics on student progress
and areas of struggle.​
 FR14.5 The system shall adapt question difficulty dynamically using AI predictions of user
performance.

FR15: Location-Based Rankings

FR15.1 The system shall allow leaderboards to be filtered by country, region, school, or
classroom.​
 FR15.2 The system shall determine a user’s location using profile data or device
geolocation.​
 FR15.3 The system shall allow students to compare their performance against peers in the
same city, school, or region.​
 FR15.4 The system shall award location-based badges (e.g., “Top 10 in Johannesburg”).​
 FR15.5 The system shall ensure location data privacy and allow students to opt-out of
public rankings.

FR16: Enhanced Push Notifications (Engagement)

FR16.1 The system shall send personalized push notifications based on a student’s activity
patterns (e.g., “Finish your streak!”).​
 FR16.2 The system shall notify users of new Classroom Wars or challenges issued by
classmates.​
 FR16.3 The system shall allow students to customize notification preferences (frequency,
type, and channel).​
 FR16.4 The system shall send AI-driven motivational messages (e.g., reminders of
progress or encouraging quotes).​
 FR16.5 The system shall notify parents/guardians about their child’s learning milestones if
linked accounts exist.

FR17: Community & Social Learning

FR17.1 The system shall allow students to join or create communities (e.g., “Grade 10
Geometry Club”).​
 FR17.2 The system shall allow community members to post questions, share solutions, and
discuss math problems.​
 FR17.3 The system shall allow admins to moderate communities and remove inappropriate
content.​
 FR17.4 The system shall provide community achievements and badges for active
participation.​
 FR17.5 The system shall allow students to invite friends or classmates to join their
community.

Summary
The revised architecture for ELO Learning represents a carefully balanced approach that
prioritizes our critical quality requirements while remaining practical for our team and timeline
constraints. The migration from microservices to SOA reflects architectural
maturity—choosing the right tool for the job rather than following trends. Our quality-driven
design strategy ensures that every architectural decision directly supports measurable
educational outcomes, while our comprehensive technology stack provides the foundation
for a scalable, maintainable learning platform.

The architecture successfully addresses the tension between educational effectiveness and
technical complexity, providing a robust foundation that can evolve with our platform's growth
while maintaining the performance and usability standards that educational success
requires.

Appendix: Reference Documentation

Demo 1 Architectural Requirements

For historical context and to trace the evolution of our architectural thinking, the original
architectural requirements document from Demo 1 can be referenced at: Demo 1
Architectural Requirements Specification

This original document provides insight into our initial architectural considerations and shows
how our understanding has matured through the development process. The transition from
our Demo 1 specifications to this current version demonstrates the iterative nature of
architectural design and how real-world constraints and deeper understanding of quality
requirements have shaped our final architectural decisions.

The comparison between these versions illustrates several key architectural learning points:
how initial complexity assumptions were refined through practical experience, how quality
requirements evolved from general statements to measurable specifications, and how our
service-oriented approach emerged as the most suitable pattern for our specific project
context and team capabilities.

https://docs.google.com/document/d/1izYvZk-W59HGZy5bak7VuHOUFCfJNT3f/edit?usp=sharing&ouid=111519098189217056979&rtpof=true&sd=true
https://docs.google.com/document/d/1izYvZk-W59HGZy5bak7VuHOUFCfJNT3f/edit?usp=sharing&ouid=111519098189217056979&rtpof=true&sd=true

	1 Introduction
	1.1 Purpose of the Document
	1.2 Scope of the System
	1.3 Intended Audience
	

	2. User Stories
	1. Students (Primary Users)
	2. System
	Adaptive Testing & ELO Calculation
	Submission Evaluation & Feedback
	Tracking & Analytics
	Leaderboard and Abuse Prevention
	Notifications & Engagement
	3. Admin (Developers and Stakeholders)
	Content & Question Management

	3. System Requirements
	FR1: User Registration and Profile Creation
	FR2: Secure Login and Authentication
	FR4: Game Modes and Math Practice
	FR5: Math Keyboard Input
	FR6: Feedback and Memorandum
	FR8: ELO & Performance Analytics
	FR9: Push Notifications
	FR10: User Accessibility
	FR11: Admin – Content & Question Management

	
	4. Use Cases
	
	
	5. Domain Model
	6. Math Sections
	Grade 8:
	Grade 9:
	
	Grade 10:
	Grade 11 + 12:
	Technology Choices
	Frontend Development: React.js and Next.js (PWA)
	Backend Development: Express.js
	Database Strategy: PostgreSQL + InfluxDB
	Real-Time Communication: NestJS WebSocket Gateway
	Authentication: OAuth 2.0 + JWT

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Services Contracts

	Establishing contracts between frontend and backend
	Users
	User object:
	GET /users
	URL Params
	Data Params
	Headers
	Success Response

	
	GET /user:id
	
	URL Params
	Data Params
	Headers
	Success Response
	Error Response:

	
	
	GET /users/:id/achievements
	URL Params
	Data Params
	Headers
	Success Response
	Error Response:

	POST /user/:id/xp
	URL Params
	Data Params
	Headers
	Success Response
	Error Response:

	Questions
	Question object:
	GET /questions
	URL Params
	Data Params
	Headers
	Success Response

	GET /question/:level
	URL Params
	Data Params
	Headers
	Success Response
	Error Response:

	GET /question/:id/answer
	URL Params
	Data Params
	Headers
	Success Response
	Error Response:

	GET /questions/topic
	URL Params
	Data Params
	Headers
	Success Response
	Contents

	GET /questions/level/topic
	URL Params
	Headers
	Data Params
	Success Response

	POST /question/:id/answer
	URL Params
	Data Params
	Headers
	Success Response
	Contents
	GET /questionsById/:id
	GET /answers/:id
	GET /practice
	GET /practice/type/:questionType
	POST /submit-answer
	POST /question/:id/submit
	POST /validate-answer
	POST /quick-validate
	POST /validate-expression

	XP and Multiplayer Endpoints
	POST /singleplayer
	POST /multiplayer
	
	
	Architecture Requirements

	ELO Learning - Architectural Requirements v2
	Quality Requirements
	Architectural Design Strategy
	Justification for Quality-Driven Design Strategy

	Architectural Strategies
	Performance Strategy: Asynchronous Processing and Caching
	Scalability Strategy: Horizontal Scale-out with Load Distribution
	Usability Strategy: Real-time UI Responsiveness
	Security Strategy: Defense in Depth with Token-based Authentication
	Availability Strategy: Fault Detection and Recovery

	Architectural Patterns
	Primary Pattern: Service-Oriented Architecture (SOA)
	Migration from Microservices to SOA: Justification
	SOA Implementation Details
	Benefits Realized
	Tradeoffs Accepted

	Secondary Pattern: Model-View-Controller (MVC) for Frontend
	Supporting Patterns

	Architectural Constraints
	Technical Constraints
	Project Constraints
	Regulatory Constraints
	Integration Constraints

	Technology Choices
	Frontend Development: React.js and Next.js (PWA)
	Backend Development: Express.js
	Database Strategy: PostgreSQL + InfluxDB
	Real-Time Communication: NestJS WebSocket Gateway
	Authentication: OAuth 2.0 + JWT

	Custom Math Keyboard Implementation
	Architecture Decision
	Technology Stack
	Architectural Benefits

	7. WOW Factors!
	FR12: Classroom Wars (Gamified Competitions)
	FR13: Customer Support & Help Desk
	FR14: AI Assistance & Adaptive Learning
	FR15: Location-Based Rankings
	FR16: Enhanced Push Notifications (Engagement)
	FR17: Community & Social Learning
	Summary
	Demo 1 Architectural Requirements

