
CSC236 L3: ADT Beetle Game Implementation

This is a lab designed for individual or pair programming work.

Note that this lab was created by Dr. Jan Pearce of Berea College.

●​ This lab may be done individually or in a team of 2 students (i.e with no more than one
partner) and you may discuss the work with the professor, the TAs, and even your classmates.
However, making any copies of your work or allowing anyone else to copy your work is and
will be treated as academic dishonesty.

●​ You will be committing your source code on Github Classroom and submitting this document to
Moodle.

Enter your name(s):

Setup

If you are working with a partner, make sure to fill out the following table as to who is doing what.

Team Roles Member Name

First Driver/​
Second Navigator

First Navigator/​
Second Driver

The Beetle Game Explained

Beetle is a game of luck involving a die and a play style similar to Hangman in which each player tries
to finish making a full beetle before the other players. This game is turn based, and for each turn, the
rules are:

1.​ A single 6-sided die is rolled. Depending on the number, a body part to a beetle can be added
as shown:

a.​ A roll of 1 is for a body and only 1 body is allowed.
b.​ A roll of 2 is for a head, only 1 head is allowed, and a body is required.
c.​ A roll of 3 is for two legs, only 6 legs are allowed, and a body is required.
d.​ A roll of 4 is for an eye, only 2 eyes are allowed, and a head is required.

e.​ A roll of 5 is for a feeler, only 2 feelers are allowed, and a head is required.
f.​ A roll of 6 is for a tail, only 1 tail is allowed, and a body is required.

2.​ If the beetle already has the maximum number of a certain body part, the player's turn is over
without adding anything and we go to step 5.

3.​ If the beetle does not have another part that is required (i.e. a head for an eye), the player's
turn is over without adding anything and we go to step 5.

4.​ If a part can be added, it is added to the beetle, and we go to step 1 .

5.​ Switch to the other player's turn.

In terms of gameplay in general, your program is to do the following:

1.​ Display whose turn it is, and when the current player's turn is over, it displays the message that
the player's turn is over and switches to the other one.

2.​ Display what the Beetle looks like for a particular player after each successful roll of the die
and body parts are added. As specified later, make sure you have the logic of adding
parts BEFORE you attempt this part. While checking the body adding functionality, it will be
enough to have a message about what part was added for each successful die roll. For
example, you can start with a display like the following. This is simply an example. Do
something different!

Player 1's turn
A 1 is rolled.
A body was created and added. POOF!
A 5 is rolled.
The beetle needs a head, so nothing was added. Switch.
Player 2's turn
A 3 is rolled.
The beetle is missing a body, so nothing was added. Switch.
Player 1's turn
A 2 is rolled.
A head was created and attached to the body. POOF!
A 1 is rolled.
A body already exists, so nothing was added. Switch.

3.​ Allow for a human to play against the computer. If you want to enable multiple players to play
against each other, feel free once you have completed the minimal requirements.

Milestone 1: Initial Design Document

The design portion of this document (until Implementation Steps) is due on Wednesday

High Level Design:

1.​ Write a HIGH LEVEL design flow chart to describe what your program is going to do. You
should include high level processes such as “how to roll the die and give a result”,“how to add
the correct body parts”, and so forth. Be sure you refrain from going down to a low level
that resembles lines of code of any kind. Instead, stick to descriptors which might refer
to larger coherent blocks of code. Some ideas you may want to carefully consider:

a)​ How can your program have one player and then the other take turns and stop when
the game is over?

b)​ How can your Beetle keep track of its state of how many and what kind of body parts it
has?

c)​ How can your program incorporate the idea of rolling the die and adding body parts to
the beetle? One option is to have the player roll the die and then explicitly add parts to
the beetle. We will use a different approach in this lab; the beetle rolls its own die and
based on the outcome, add parts to itself (or not). The user would simply call a method
of the Beetle class called something appropriate like play().

Note that a flow chart style that makes your program visual like
https://www.gliffy.com/sites/gliffy/files/image/2020-07/image-blog-ten-tips-flowchart.jpg can
really help at this point.

Developing the Beetle Class - Attributes

Given the flowchart above, you are to start designing the Beetle class as an ADT. Remember that in
OOP, classes have attributes (variables) and behaviors (methods), and these should be directly
related to the class. The attributes are given by nouns, like feeler, head, name, and so forth. Each
player has their own Beetle object so that they could have different body parts, and each Beetle has
its own Dice object that it rolls to determine what body parts to attach.

https://www.gliffy.com/sites/gliffy/files/image/2020-07/image-blog-ten-tips-flowchart.jpg

2.​ Discuss the instance and class variables in your Beetle class and what data type they
should be. These variables should all be private. Please include a variable for the Beetle
object's name and an object instance of the Dice class. If you plan to use an array to store
information about its body parts, discuss the advantages and disadvantages of using them.

Developing the Beetle Class - Methods

The Beetle class should have at least the following methods:

●​ A constructor that initializes all the attributes so that the Beetle object has no body parts.
●​ A friend function that overloads the "<<" operator to output the Beetle object to the cout

stream.
●​ Getter functions that return information about the state of the Beetle object, such as whether it

has a body and so forth. For example, a function like get_body() can return true if it has a
body. Be careful about what the return type of these functions are.

●​ A method that causes the Beetle to roll its die and then adds body parts to itself based on the
outcome and whether it can.

Other methods depend on how you want the Beetle to behave. For example, you may find having a
method like add_head() that adds a head may make sense, or you may want a more general
purpose method like add_part(partNum) that takes as input the appropriate body part that the
Beetle adds to itself. Another thing to consider is WHERE you want to place the logic to decide
whether a body part can be added. Inside the individual add_<bodyPart>() or some other
method? There are many ways to design this program, so make sure you think carefully about what
behaviors to add!

3.​ List the methods and a brief description of what they will do:

CRC Cards

Now you are ready to put everything together into a CRC card.

4.​ Write the specifications for each attribute and method of the Beetle class based on functional
abstraction. Note that even if you are only using one class, we are still using the CRC cards
because they are standard practice in design. Here, you are using the Beetle and Dice
classes, but because the Dice class is given to you, you can outline just the Beetle class.

Class Name: Beetle

Class Attributes Class Collaborations

1.​

Class Methods Class Collaborations

1.​

Friend functions Collaborations

1.​

Design Collaborations

5.​ List all of the people who helped you think through the design, briefly describing their input.

Reflection

6.​ Describe how creating a design plan such as we did here before implementing might save a
team time in the programming and debugging process

Implementation Steps

Update and submit this document when the full lab is due.

It is very tempting to jump right into writing your program, but take your time. A common and effective
practice is to make small and incremental improvements. That way, you can check your program as
you develop it and ensure that at each point, you have something that works.

We have some starter code for you in this repo L04-Beetle Game. Let us first focus on how the game
will flow in the main() function.

There will be two Beetle objects, one for the player and the computer, but how the game proceeds
and ends is up to you. Any changes to the Beetle objects must be through their methods; you cannot

https://classroom.github.com/g/iU5gNV4o

change their attributes directly except through methods. How complicated this function looks
depends on what Beetle behaviors you designed.

7.​ Detail the logic of this main function and what it will do.

Method Prototypes in the Class Definition

A method prototype (aka function or method interface) is a declaration of a function that specifies
the function's name and type signature (data types of parameters and return type), but omits the
function or method body. The prototype typicialy also contains a docstring that specifies both pre- and
post-conditions when they are not obvious.

For example, a prototype from the Dice class can read like:

Dice​
public:
int get_sides() const // how many sides this die has
 // postcondition: return # of sides of die instance

Do you see how it details the name, parameters (in this case, there are none), and the return type?
The comment at the end states what the function does but NOT how it works.

8.​ Describe specifically how creating prototypes might help a pair of programmers equitably
share implementation work.

Displaying Your Beetle using ASCII

Once you feel that your Beetle game is working correctly (adding body parts as it rolls its die), it is
time to tackle how to display the Beetle object itself. The starter code contains ASCII art of the
complete Beetle in the complete_beetle array that the show() function simply outputs into the
cout stream. Use complete_beetle for reference for how the final image should look. Your
program should change partial_beetle, which is initially blank.

9.​ Discuss how you can use appropriate indices from complete_beetle to modify
partial_beetle in a targeted way as the game progresses.

10.​Suppose you want to change the ASCII image of an arbitrarily large Beetle using rows in 𝑛

partial_array. Discuss in the space below the complexity difference between indexing a
specific position in the array directly to change the image versus copying the entire array while
modifying the string at a single position.

Implementation Plan

Next, list who will implement each of your task components by what date. Be careful to keep this
equitable if you are working in a pair.

Team Member Name Milestone date Subtask needed

Additional Requirements

DESIGN:
Please keep the above design plan components up to date which meets the lab requirements as you
make the following required changes to your code.

REQUIREMENTS

Your program must have good structure and style and also do the following:

●​ Implement the Beetle game correctly and designed in a modular fashion, correctly using
Beetle as an ADT with correct parameter passing and appropriate use of return values.

●​ Include a descriptive header as a comment at the top of your source code which include
the names of all authors, the assignment name and purpose, and a statement that this
is the work of the authors except where specifically documented.

●​ Use only meaningful variable and method names.

●​ Include a descriptive docstring for each method when the purpose is not clear, and, it
should have appropriate pre- and post-conditions whenever these are not clear.

●​ Display the partially built Beetle as play continues

Make sure to include a fully updated README.md with all assistance acknowledged.

To submit

●​ Milestone 1: Complete the design section of this document as your initial design document,
download it, and upload it to Moodle by the Milestone 1 due date and time. Pull your repo,
make at least one commit.

●​ Milestone 2: Make a sincere attempt to complete your program so that you can ask questions.
Ensure you sync your repo to GitHub. Some parts may not be working.

●​ Total Completion: Complete the implementation section of this document, download it, and
upload it to Moodle. Complete the README.md file by replacing all the FIXMEs with your
responses, then commit and push your repository to Github when this project is due..

	CSC236 L3: ADT Beetle Game Implementation
	Enter your name(s):

	Setup
	The Beetle Game Explained
	Milestone 1: Initial Design Document
	The design portion of this document (until Implementation Steps) is due on Wednesday
	High Level Design:
	Developing the Beetle Class - Attributes
	Developing the Beetle Class - Methods
	CRC Cards
	

	Design Collaborations
	Reflection

	Implementation Steps
	Update and submit this document when the full lab is due.
	Method Prototypes in the Class Definition
	Displaying Your Beetle using ASCII
	Implementation Plan
	Team Member Name
	Milestone date
	Subtask needed

	Additional Requirements
	To submit

