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Introduction

Learning under supervision has had a profound impact in the progress of Al and machine
learning over the past decades. Supervised learning, however, requires a large amount of data
to achieve reasonable performance for a given task. Collecting and labelling the amount of data
necessary to train supervised models is expensive and doesn’t scale well. For example,
ImageNet with its 14 million images is estimated to take ~19 human years to annotate [1],
keeping in mind that the dataset: has limited concepts of the world; doesn’t include any temporal
concepts; and is unbalanced and not fully inclusive [2]. In many real-world scenarios, we simply
don’t have access to labels for the data (e.g. machine translation for languages that aren’t as
prevalent in digital form). Medical imaging is notorious for this [3] as professionals have to
spend countless hours looking at images in order to manually classify and segment them.

Self-supervised learning--where a model would generate the labels needed for learning
semi-automatically from the data itself-- has made tremendous progress over the past few
years, with successes in NLP [4] and in video and language representation learning [5].

In this project, we’ll implement a contrastive self-supervision model to learn image
representations from unlabelled data and investigate its performance for an image classification
downstream task. The overall outlined learning framework is semi-supervised and trained in two
stages. First we’ll implement SimCLR to extract image feature representations without using
labels. Then, we’ll use a small, labeled dataset to train a classifier on top of our learned feature
backbone for the classification task.

Methodology

The SImCLR model consists of a ResNet-50 feature backbone (with classification head
removed) and a linear projection head g(). After training the contrastive model, we would
discard the projection head and add an appropriate classification head for the downstream task.
The training procedure, shown in Fig. 1, relies heavily on image augmentation to produce a pair
for each sample datapoint. Those pairs, called positive samples, are the basis for the
contrastive learning objective where we optimize our model to produce representations that
achieve high similarity between the positive pairs and low similarity with all the other augmented
data points (negatives). For the model to succeed in this objective, it would need to discover the
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underlying structure of the data distribution, which is what we want for our feature
representation.
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For the augmentation process, we follow the original paper and use: random crop, horizontal flip
with 50% probability, color distortion with 80% probability, grayscale transformation with 20%
probability, and we omit the gaussian blurring. Fig. 1 shows the examples of our augmentation
process.

In this project, we evaluate our feature representation that was learned in an self-supervised
manner by evaluating its performance on a downstream classification task. First we train the
contrastive model for 50 epochs on CIFAR10 without using labels, using the biggest batch size
we can fit into our GPUs. We use a cross-entropy temperature of 0.5, Adam for our optimizer
with 1e-3 learning rate, and a projection dimension of 1024. Next, we extract the feature
representation of the model and use it to train a classifier on a labeled data 10% the size of the
unlabeled dataset with a similar training setup and additional weight decay of 1e-5. To evaluate
our learned representation, we evaluate how well the self-supervised model performs on a
classification task when compared to (1) a fully-supervised model trained on a small, labeled
dataset, and (2) a supervised model trained on large amounts of data. We expect the model to
outperform the former, while remaining competitive with the latter.

Results

Fig 2. illustrates the downstream classification accuracy of the SIimCLR model across
contrastive training epochs. We were able to obtain a top-1 classification accuracy of 77.4% and
94.8% top-3 accuracy on a held-out test data set. The model significantly outperforms the
fully-supervised in the absence of large amounts of data, while falling short of reaching the
supervised model trained on large data.
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Figure 2: Accuracy on classification task using the three outlined models.

We do expect, however, that we would be able to reach a more competitive accuracy with more
compute resources (larger batches) and more training time. We tracked the contrastive loss
(tau=0.5) across all trained epochs, shown in Fig. 3. We note that the loss saturates early
around ~4.5, which is directly affected by the batch size. However, the loss continues to
gradually and noisily decrease, and longer epochs would yield better losses.
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Figure 3: Contrastive training loss across training epochs.

A good feature representation is expected to generalize and perform well without additional
training and fine-tuning. We examine this by freezing the feature network and only training a
linear evaluator for classification. We achieve an accuracy of 71.3% on a small labeled dataset,
while a randomly initialized model with the same setup only achieves 15.6%--showing that the
learned representation actually performs well without the need for further training. Summary of
all experiments are reported in Table 1.



Full model (End-to-End) | Linear Eval (Frozen feature)

Top-1 Top-3 Top-1 Top-3

Accuracy | Accuracy Accuracy Accuracy
SimCLR 77.4% 94.8% 71.3% 93.6%
Random Init | 38.2% 60.1% 15.6% 34.4%

Table 1: Summary of experimental results.

Next, we inspect the feature-space clusters of the self-supervised representation networks by
sampling random test images and finding nearest neighbor images in the feature space--after
all, contrastive learning optimizes for maximizing similarity which should result in similar images
being closer together. Figure 4 shows four random samples with the 5-NN images in feature
space. Indeed we see that we managed to learn representations that cluster similar images,
with some failure cases to note.
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Figure 4: Nearest neighbors of test images.

Challenges

SimCLR is notorious for being compute intensive, requiring a large batch size as a way to
ensure the availability of negatives which are essential for contrastive learning. The original
paper uses 4096 batch size and trains for over 500+ epochs--our batch size tops at ~200, which
immediately puts an upper limit on the maximum accuracy we can achieve. Despite this, we
manage to demonstrate the capabilities of learned representation in the absence of large
amounts of labeled data, albeit with a lower accuracy than the original paper.



Reflection

How do you feel your project ultimately turned out? How did you do relative to your
base/target/stretch goals?

We set out to achieve the underlying story we hoped to tell, even though we made some
modifications to our initial plan. Our base goal was to implement SimCLR and benchmark its
performance using pretrained weights in the backend. We did not see the need to use
pretrained weights, so we proceeded to our target goal, which was to train the entire model from
scratch and perform two experiments to see its performance in comparison to a fully-supervised
model.

We did not have time to reach our stretch goals, which were to perform ablation studies and
additional experiments on batch size, augmentation, etc.

Did your model work out the way you expected it to?

Given the significant training setup in the original paper, we were surprised by how well our
model performed. Though the paper emphasizes the importance of a large batch size and long
training times, we were able to achieve 77.4% top-1 accuracy using a classifier trained on a
small subset (10%) of the labeled data with a batch size of only ~200.

How did your approach change over time? What kind of pivots did you make, if any?
Would you have done differently if you could do your project over again?

We decided to simplify our experimental setup by reducing the number of datasets used, as the
paper suggests differing model architectures for the different datasets which, coupled with the
high compute requirement, made for slow progress. With that said, we still perform the
experiments outlined in the proposal and feel like we are able to reach the same outcomes.

Additionally, we began with the intention of writing our code for distributed deployment on
multiple GPUs. However, despite our smaller batch size and slower training speed, we were
able to achieve surprisingly good results that were more than sufficient for our purposes, so we
ended up keeping the implementation on a single GPU. Perhaps if we implemented distributed
training, we could have achieved even more impressive results by using more computational
resources.

What do you think you can further improve on if you had more time?

As mentioned in the above section, given more time, we would have implemented distributed
training, allowing us to train for more epochs. We would also experiment with more datasets,
specifically ImageNet, which the original paper used for training, to test the generalizability of
our results.



We would have also liked to perform ablation studies similar to those in the original paper on the
effect of different augmentation compositions on learning.

What are your biggest takeaways from this project/what did you learn?

Our biggest takeaway from this project was that self-supervised contrastive learning is an
incredibly powerful tool for learning representations that generalize and transfer well to
downstream tasks. In our case, SImCLR was rather compute-intensive, although we did
manage to obtain good results with limited resources. It's also worth investigating other
self-supervised methods that have been shown state-of-the-art results with a fraction of
SimCLRs resource requirements.
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