Real Space, Virtual Space

Until now we have been drawing and moving in the physical world where location is defined
relative to our location and our facing in space. In our minds, we are the point of origin and
forward is always in front.

We are now about to move into virtual, computational space where we need an objective,
numerically-based way to define location on what we will call a canvas for the programs you will
write, which we will refer to as sketches. Hence, the Cartesian Plane or the x,y coordinate
system.

If you are new to programming, you may wish to pause here and watch these videos first. You
are also welcome to move on and follow along conceptually.

Videos 1-10. 12-14 (~2.5 hours)

Below is 20 x 20 canvas. 20 what? 20 pixels. And each pixel has an (x,y) coordinate that locates
the top-left corner of the pixel.

The x-dimension (horizontal) begins at 0 and ends at 20.
The y-dimension (vertical) begins at 0 and ends at 20.

The coordinates of the bottom right corner are always equal the width and height of the canvas
(20, 20). However, since the coordinate locates the top-left corner of the pixel, the (20,20) pixel
is actually offscreen and invisible. If you draw a point at (20,20), you will not see it.

If this feels strange to you, it's because the x,y coordinate system in graphical programming is
different from the x,y coordinate system you remember from math. For starts, the point of origin
(0,0) is in the top-left corner rather than in the middle of the page. And the y-dimension is flipped
upside down. The numbers increase as you move down.

This might seem arbitrary, but given what you’re trying to accomplish here in code (draw things
on a screen) versus what you're trying to accomplish in math (graph equations and data), this is
much more sane interpretation of the Cartesian Plane. For one thing, in math, there is no
conception of canvas size. The Cartesian Plane extends forever in every direction.

So, if you wanted to draw a point in the middle of of your 20 x 20 canvas, you might try
something like:

https://www.youtube.com/watch?v=yPWkPOfnGsw&list=PLRqwX-V7Uu6Zy51Q-x9tMWIv9cueOFTFA

point (10,

10) ;

x-dimension —

0,0

19,0

0,20

20,20

If you're feeling a bit underwhelmed by the X,y coordinate system as an invention, keep in mind
that both the grid plan for cities and the lat-long geographic coordinate system have only been

around for 2,000+ years of the 200,000 years of human existence. Such a rectilinear and

objective view of the world is far from a given as we will see in Chapter 1 when we fool-hardedly
attempt to do something as simple as draw a circle in the rectilinear universe of x,y coordinates.

Connect the dots: Without looking at the grid, can you come up with 5 points that would yield a
bear-like drawing if you connected the points? Try it to confirm.

How do we move?

At this point you should at least know how to draw things on the screen in p5 that do not move
by providing coordinate values.

We need variables x and y to replace those coordinates so the coordinates can change over
time.

Xx = x + 1;
y =y + 1;

Code Example 1.1: Linear Pathway

Play with the code.

You may have noticed that you can change how the line moves by changing the number that
determines how quickly x and y change. Can you figure out what you need to do to change
speed and what you need to do to change direction?

Can you draw how the line would move in a single frame of animation for each of these xspeed
and yspeed combinations?

xspeed = 3; xspeed = -3; xspeed = 3; xspeed = -3;
yspeed = 9; yspeed = -15; yspeed = -15; yspeed = 9;

http://alpha.editor.p5js.org/move.mimi/sketches/rJWBguUNf

And since we’re going to manipulate these numbers, let's make them variables xspeed and
yspeed so they're easier to reference and change.

To help us visualize what's going on, let’s bring back that diagram of a line.

Start point
End point
Length
Direction as Angle
Direction as Slope
o X-component A
o y-component _ ~.

If aline moves from point A to point B in 1 frame of animation, you could say the x-component
and the y-component are the xspeed and yspeed respectively.
Quiz:

What would the xspeed and yspeed be if it took 60 frames to move from point A to point B?

Speed versus Direction

Speed is determined by the size of the numbers.

Direction is determined at a macro level by the sign of xspeed and yspeed.

The sign of xspeed and yspeed determines the
direction quadrant.

- xspeed always go left.
+ xspeed always go right.

- yspeed always go up.
+ yspeed always go down.

Direction at a micro level by the relative size of xspeed and yspeed.

If xspeed is 4x yspeed, the line will move across the screen at twice the rate that it will move
down the screen resulting in a mostly horizontal line. If yspeed is 4x xspeed, the line will
move down the screen at twice the rate that it will move across the screen resulting in a
mostly vertical line. If xspeed is equal to yspeed, you get a line moving at a 45-degree
towards the bottom right of the screen.

xspeed = yspeed | xspeed = 4; 450
yspeed = 4;
yspeed =

xspeed*1

xspeed > yspeed | xspeed = 40; Almost horizontal.
yspeed = 4; '
yspeed =
xspeed/10

xspeed < yspeed | xspeed = 4; Almost vertical
yspeed = 40;
yspeed =

xspeed*10

Quiz:

How would get a line that always moves to the corner of the screen regardless of the aspect
ratio of your sketch canvas?

Re-writing Linear Motion

Now let’s rewrite our algorithm for linear motion so that we can control speed independently of
direction. This is something we will continue to do throughout the workbook. At first it may feel
like we’re making things unnecessarily complicated by making things more abstract. However, it
is important that we do this for 2 reasons:
1. It will give us more expressive control over our animations.
2. It will make it easier for us to hook sensor data up in the future. Right now, if you want to
change direction, you need to change both xspeed and yspeed. Ideally what you want
is to be able to hook up say the position of your right hand to the direction.

X += xspeed;
y += yspeed;

What we want is a single variable to control speed and a single variable we will call ysc1 to
control direction or more precisely the slope or slant of the line. We call it ysc1 because we are
going to use that value to scale xspeed to in order to determine yspeed.

speed = 1;
yscl = 1/10; // yspeed / xspeed

As a cheat, we can simply let xspeed determine the speed and calculate yspeed based off of

xspeed.

xspeed = 1;
yscl = 0.1;
yspeed = yscl * xspeed;

If we want to change just the speed without affecting direction, we adjust xspeed and yspeed
will adjust automatically and maintain a 1:10 relationship to xspeed.

To go twice as fast:

2;
.1
yscl * xspeed;

xspeed
yscl =
yspeed

o

If we want to adjust direction without affecting speed, we adjust slope and change the yspeed
xspeed relationship.

To create a line that is twice as steep:

xspeed
yscl =
yspeed

o |

1;

.23

yscl * xspeed;

Full example:

https://editor.p5js.org/move.mimi/sketches/fA--n2kyg

Summary: The Parameters of Linear Motion

Translated into motion on a 2-dimensional plane:

xspeed Step size of horizontal movement.
yspeed Step size of vertical movement.
yscl A value >= 0 centered Size of step

around 1.

https://editor.p5js.org/move.mimi/sketches/fA--n2kyg

Random Motion

If linear motion is motion that never changes direction then random motion is its opposite.

Y= xs;wuk
yamdom L”‘h“)

\

“lanse, Hanoe

g
Tnse s xshd

\j+;\.js‘Le¢Jl

ol

random (-4,4)

\

- ran
i

“TangeRysk , YEnLHysd

&

ranse #ysﬁgi-t— * yge,Q,

Summary: The Parameters of Random Motion

Translated into motion on a 2-dimensional plane:

range A value >= 0. range determines the step size
of random motion and therefore
the speed of movement.
yscl A value >= 0 centered yscl determines how narrow or
around 1. wide is the range of motion. If
yscl > 1, motion will be more
vertical. If ysc1 <1, motion will
be more horizontal.
xshift A value > 0 centered If xshift > 1, we will drift to the
around 1. right. If xshift <1, we will drift to
the left.
yshift A value > 0 centered If yshift > 1, we will drift down.
around 1. If yshift <1, we will drift up.
interval A value > 0. How often we change direction.

Noisy Motion

Noisy motion is random motion that has been averaged and smoothed.

X+= XSP/chl 3+ = 95]2/061
(vwm@(-t)
Mise —t> S holse ()4 vangl
nowse (4) % sl k \ .
g o ysel
v
L‘ .
O\on selt) —xsh.Pr)ge rang(_ (V\o:sc(f)—gjcku§+> #range o ﬂsd\

Summary: The Parameters of Noisy Motion

Translated into motion on a 2-dimensional plane:

tspeed A value > 0. How errative / smooth is the noisy motion.
The greater the tspeed, the more erratic
and random the motion. The smaller the
tspeed, the smoother the motion.

range A value >=0. Step size of random motion and therefore
the speed of movement.

yscl A value >= 0 centered around 1. | How narrow or wide is the range of
motion. If ysc1 > 1, motion will be more
vertical. If ysc1 < 1, motion will be more
horizontal.

xdrift A value > 0 centered around 1. If xdrift > 0.5, we will drift to the left. If
xdrift < 0.5, we will drift to the right.

ydrift A value > 0 centered around 1. If ydrift > 0.5, we will drift to the left. If
ydrift <0.5, we will drift to the right.

interval A value > 0. How often we change direction.

Circular Motion

If random was utterly unpredictable, constant and complete change.
And random was pretty unpredictable, constant, but incomplete change.

Then circular pathways are utterly predictable, constant, yet perfectly smooth, incremental
change.

Creating circular motion in a Cartesian world is an awkward business. Circular polar coordinates
(radius, angle) need to be converted to rectilinear Cartesian coordinates (x,y).

x = cos (angle) *ranget+ centerX;
Yy

sin(angle*yfreq) *range*yscl+ centerY;

Summary: The Parameters of Circular Motion

Translated into motion on a 2-dimensional plane:

aspeed A value > 0. How quickly we are moving around the
circle. The faster we move, the less
circular and the more angular the motion.

range A value >= 0. Size of the circle.

scl A value >= 0 centered around 1. Orientation of the ellipse. If yscl <1, we
Y p Y

get a vertical ellipse. If yscl <1 and
yscl > -1, we get a horizontal ellipse.

yfreqg A value > 0 centered around 1. If yfreq> 1, we will progress around
the circle more quickly in the vertical
direction than the horizontal. If yfreqg <
1, we will progress around the circle
more quickly in the horizontal direction
than the vertical. If yfreq is not a whole
number, we will create asymmetrical
pathways.

centerX x-coordinate of the center of the circle.

centerY y-coordinate of the center of the circle.

	Real Space, Virtual Space
	How do we move?
	Re-writing Linear Motion
	Summary: The Parameters of Linear Motion

	
	
	
	Random Motion
	Summary: The Parameters of Random Motion

	Noisy Motion
	Summary: The Parameters of Noisy Motion

	Circular Motion
	Summary: The Parameters of Circular Motion

	

