/* USER CODE BEGIN Header */
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* @file : main.c
* @brief : Main program body
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* @attention

*

* Copyright (c) 2025 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.
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*/

/* USER CODE END Header */

/* Includes */

#tinclude "main.h"

/* Private includes */

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef */

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */



/* Private define

/* USER CODE BEGIN PD */

/* USER CODE END PD */

*/

/* Private macro

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables

*/

*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes
void SystemClock_Config(void);
static void MX_GPIO_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code

*/

*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
* @brief The application entry point.

* @retval int



*/
int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration */

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END Syslnit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

/* USER CODE BEGIN 2 */

/* USER CODE END 2 */

/* Infinite loop */



/* USER CODE BEGIN WHILE */
while (1)
{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}
/* USER CODE END 3 */

J¥*
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OsclnitTypeDef RCC_OsclnitStruct = {0};

RCC_CIkInitTypeDef RCC_ClkInitStruct = {0};

/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OsclnitTypeDef structure.
*/
RCC_OsclnitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OsclnitStruct.HSIState = RCC_HSI_ON;
RCC_OsclnitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OsclnitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OsclnitStruct) != HAL OK)
{

Error_Handler();

}



/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_CIkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_CIklInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_CIkInitStruct. AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_CIkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();
!
}

/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */

/* USER CODE END MX_GPIO_Init_1 */

/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();



/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOA, RED_Pin|GREEN_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_RESET);

/*Configure GPIO pins : RED_Pin GREEN_Pin */
GPIO_InitStruct.Pin = RED_Pin|GREEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW,;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/*Configure GPIO pin : BLUE_Pin */
GPIO_InitStruct.Pin = BLUE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW,;

HAL_GPIO_Init(BLUE_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pins : PIR_Pin TOUCH_Pin */
GPIO_InitStruct.Pin = PIR_Pin| TOUCH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_lInitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

/*Configure GPIO pin : BUZZER_Pin */
GPIO_InitStruct.Pin = BUZZER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;



HAL_GPIO_Init(BUZZER_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */

/* USER CODE END MX_GPIO_Init_2 */

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{

1
/* USER CODE END Error_Handler_Debug */

#ifdef USE_FULL_ASSERT

/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.

* @param file: pointer to the source file name



* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */



