/* USER CODE BEGIN Header */

/**
3k 3k 3k 3k 3k 3k sk sk sk ok sk 3k 3k 3k 3k sk sk sk ok ok 3k 3k sk sk sk sk sk 3k 3k 3k 3k sk sk sk ok ok 3k 3k sk sk sk sk sk ok 3k 3k 3k 3k sk sk ok 3k 3k 3k sk sk sk sk sk ok 3k 3k sk sk ok sk ok ok sk %k sk sk sk sk sk ok ok k
* @file : main.c
* @brief : Main program body

3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k sk sk 3k 3k 3k 3k sk sk 3k 3k 3k 3k %k sk 3k 3k 3k 3k 3k sk 3k >k 5k 3k 3k sk 3k >k 5k 3k 3k sk 3k >k 5k 3k 3k sk 3k 3k 3k 3k 3k sk >k 3k 3k %k sk sk %k 3k 3k %k %k %k kok sk k k

* @attention

*

* Copyright (c) 2025 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

%
3k sk ok 3k 3k 3k sk sk sk ok sk sk sk 3k sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk ok ok sk sk sk sk sk ok sk sk 3k 3k sk sk sk sk ok sk sk 3k sk sk sk ok sk ok sk 3k sk sk sk sk ok ok sk 3k sk sk sk sk sk sk k k
*/

/* USER CODE END Header */

/* Includes */

#tinclude "main.h"

/* Private includes */

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef */

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define

/* USER CODE BEGIN PD */

/* USER CODE END PD */

*/

/* Private macro

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables

*/

*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes
void SystemClock_Config(void);
static void MX_GPIO_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code

*/

*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
* @brief The application entry point.

* @retval int

*/
int main(void)

{

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration */

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END Syslnit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

/* USER CODE BEGIN 2 */

/* USER CODE END 2 */

/* Infinite loop */

/* USER CODE BEGIN WHILE */
while (1)
{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

}
/* USER CODE END 3 */

J¥*
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OsclnitTypeDef RCC_OsclnitStruct = {0};

RCC_CIkInitTypeDef RCC_ClkInitStruct = {0};

/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OsclnitTypeDef structure.
*/
RCC_OsclnitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OsclnitStruct.HSIState = RCC_HSI_ON;
RCC_OsclnitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OsclnitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OsclnitStruct) != HAL OK)
{

Error_Handler();

}

/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_CIkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_CIklInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

RCC_CIkInitStruct. AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_CIkInitStruct, FLASH_LATENCY_0) != HAL_OK)

{

Error_Handler();
!
}

/**

* @brief GPIO Initialization Function

* @param None

* @retval None

*/

static void MX_GPIO_Init(void)

{

GPIO_InitTypeDef GPIO_InitStruct = {0};

/* USER CODE BEGIN MX_GPIO_Init_1 */

/* USER CODE END MX_GPIO_Init_1 */

/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();

__HAL_RCC_GPIOB_CLK_ENABLE();

/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(GPIOA, RED_Pin|GREEN_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin Output Level */

HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_RESET);

/*Configure GPIO pins : RED_Pin GREEN_Pin */
GPIO_InitStruct.Pin = RED_Pin|GREEN_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW,;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

/*Configure GPIO pin : BLUE_Pin */
GPIO_InitStruct.Pin = BLUE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW,;

HAL_GPIO_Init(BLUE_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pins : PIR_Pin TOUCH_Pin */
GPIO_InitStruct.Pin = PIR_Pin| TOUCH_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_lInitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

/*Configure GPIO pin : BUZZER_Pin */
GPIO_InitStruct.Pin = BUZZER_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

GPIO_InitStruct.Pull = GPIO_NOPULL;

HAL_GPIO_Init(BUZZER_GPIO_Port, &GPIO_InitStruct);

/* USER CODE BEGIN MX_GPIO_Init_2 */

/* USER CODE END MX_GPIO_Init_2 */

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{

1
/* USER CODE END Error_Handler_Debug */

#ifdef USE_FULL_ASSERT

/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

