
/* USER CODE BEGIN Header */

/**

 **

 * @file : main.c

 * @brief : Main program body

 **

 * @attention

 *

 * Copyright (c) 2025 STMicroelectronics.

 * All rights reserved.

 *

 * This software is licensed under terms that can be found in the LICENSE file

 * in the root directory of this software component.

 * If no LICENSE file comes with this software, it is provided AS-IS.

 *

 **

 */

/* USER CODE END Header */

/* Includes --*/

#include "main.h"

/* Private includes --*/

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef ---*/

/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define --*/

/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro ---*/

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---*/

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes ---*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**

 * @brief The application entry point.

 * @retval int

 */

int main(void)

{

 /* USER CODE BEGIN 1 */

 /* USER CODE END 1 */

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

 HAL_Init();

 /* USER CODE BEGIN Init */

 /* USER CODE END Init */

 /* Configure the system clock */

 SystemClock_Config();

 /* USER CODE BEGIN SysInit */

 /* USER CODE END SysInit */

 /* Initialize all configured peripherals */

 MX_GPIO_Init();

 /* USER CODE BEGIN 2 */

 /* USER CODE END 2 */

 /* Infinite loop */

 /* USER CODE BEGIN WHILE */

 while (1)

 {

 /* USER CODE END WHILE */

 /* USER CODE BEGIN 3 */

 }

 /* USER CODE END 3 */

}

/**

 * @brief System Clock Configuration

 * @retval None

 */

void SystemClock_Config(void)

{

 RCC_OscInitTypeDef RCC_OscInitStruct = {0};

 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

 /** Initializes the RCC Oscillators according to the specified parameters

 * in the RCC_OscInitTypeDef structure.

 */

 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

 RCC_OscInitStruct.HSIState = RCC_HSI_ON;

 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

 {

 Error_Handler();

 }

 /** Initializes the CPU, AHB and APB buses clocks

 */

 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

 {

 Error_Handler();

 }

}

/**

 * @brief GPIO Initialization Function

 * @param None

 * @retval None

 */

static void MX_GPIO_Init(void)

{

 GPIO_InitTypeDef GPIO_InitStruct = {0};

 /* USER CODE BEGIN MX_GPIO_Init_1 */

 /* USER CODE END MX_GPIO_Init_1 */

 /* GPIO Ports Clock Enable */

 __HAL_RCC_GPIOD_CLK_ENABLE();

 __HAL_RCC_GPIOA_CLK_ENABLE();

 __HAL_RCC_GPIOB_CLK_ENABLE();

 /*Configure GPIO pin Output Level */

 HAL_GPIO_WritePin(GPIOA, RED_Pin|GREEN_Pin, GPIO_PIN_RESET);

 /*Configure GPIO pin Output Level */

 HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_RESET);

 /*Configure GPIO pins : RED_Pin GREEN_Pin */

 GPIO_InitStruct.Pin = RED_Pin|GREEN_Pin;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

 /*Configure GPIO pin : BLUE_Pin */

 GPIO_InitStruct.Pin = BLUE_Pin;

 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

 HAL_GPIO_Init(BLUE_GPIO_Port, &GPIO_InitStruct);

 /*Configure GPIO pins : PIR_Pin TOUCH_Pin */

 GPIO_InitStruct.Pin = PIR_Pin|TOUCH_Pin;

 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

 /*Configure GPIO pin : BUZZER_Pin */

 GPIO_InitStruct.Pin = BUZZER_Pin;

 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

 GPIO_InitStruct.Pull = GPIO_NOPULL;

 HAL_GPIO_Init(BUZZER_GPIO_Port, &GPIO_InitStruct);

 /* USER CODE BEGIN MX_GPIO_Init_2 */

 /* USER CODE END MX_GPIO_Init_2 */

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**

 * @brief This function is executed in case of error occurrence.

 * @retval None

 */

void Error_Handler(void)

{

 /* USER CODE BEGIN Error_Handler_Debug */

 /* User can add his own implementation to report the HAL error return state */

 __disable_irq();

 while (1)

 {

 }

 /* USER CODE END Error_Handler_Debug */

}

#ifdef USE_FULL_ASSERT

/**

 * @brief Reports the name of the source file and the source line number

 * where the assert_param error has occurred.

 * @param file: pointer to the source file name

 * @param line: assert_param error line source number

 * @retval None

 */

void assert_failed(uint8_t *file, uint32_t line)

{

 /* USER CODE BEGIN 6 */

 /* User can add his own implementation to report the file name and line number,

 ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

 /* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

