
Gang Scheduling Implementation

Gang Scheduling Implementation​ 1

Change log​ 1
Goals​ 2
Non Goals​ 2
Generic flow​ 2
Application submit handling​ 4

Total placeholder size​ 4
Handling queue with a FAIR sort policy​ 4

Scheduling in queues with a quota set​ 4
Scheduler logic changes​ 5
Application completion​ 7

Definition​ 7
Clean up​ 7

Application recovery​ 10
Interface changes​ 11

AddApplication​ 11
AllocationAsk​ 11
Allocation​ 12
AllocationRelease Response and Request​ 13
TerminationType​ 15
AllocationAskRelease Response and Request​ 15

Scheduler storage object changes​ 16
AllocationAsk​ 16
Allocation​ 17
Application​ 17
Queue & Node​ 17

Change log

Change Date Editors Description

2020-11-25 Wilfred Spiegelenburg Initial document

2020-11-26 Wilfred Spiegelenburg Allocation release definition, order change

2020-11-27 Wilfred Spiegelenburg Sequence diagram

2020-12-12 Wilfred Spiegelenburg Application submit and cleanup

1

2020-12-15 Wilfred Spiegelenburg AllocationRelease message and cleanup
sequence

2020-12-24 Wilfred Spiegelenburg Allocation changes for recovery

2021-02-15 Wilfred Spiegelenburg Placeholder allocation and ask cleanup

YUNIKORN-2 describes a new format for scheduling applications by taking into account the
overall demand the application will have. It guarantees the specified resources for the
application by reserving the resources.

There are two parts to this implementation:

●​ Kubernetes Shim
●​ Core and scheduling

This document describes the implementation on the core side.

Goals
Define the following points:

1.​ Define changes required for the shim to core communication (scheduler interface)
2.​ Scheduler storage object changes
3.​ Scheduler logic changes

Non Goals
Excluding the following major points:

1.​ Kubernetes shim side implementation
2.​ Generalised preemption on the core side

Generic flow
As described in the YUNIKORN-2 design documentation we have the following flow. The
flow is triggered by a pod that is submitted which triggers the application creation. This first
pod is in the case of a Spark application, the driver pod. In case the flow is triggered from the
creation of an application CRD there will not be a first pod. This is however outside of the
core scheduling logic. From the core side there should be no difference between the two
cases. More details are in the chapter on the Scheduler logic changes.

The flow of an application submitted. The numbers in the diagram correspond to the
description below the diagram.

2

Combined flow for the shim and core during startup of an application:

●​ An application is submitted with TaskGroup(s) defined. (1)
●​ The shim creates the application and passes the application to the core. (2)
●​ The shim creates placeholder pods for each of the members of the TaskGroup(s) (3)
●​ The pods are processed and passed to the core, as per the normal behaviour, as

AllocationAsks for the application with the correct info set. (4)
●​ The placeholder AllocationAsk’s are scheduled by the core as if they were normal

AllocationAsk’s. (5)
●​ All Allocations, even if they are the result of the placeholder AllocationAsks being

allocated by the scheduler, are communicated back to the shim.
●​ The original real pod is passed to the core as an AllocationAsk. (6)
●​ After the real pod and all all the placeholder pods are scheduled the shim starts the

real pod that triggered the application creation. (7)

After the first, real, pod is started the following pods should all be handled in the same way
(8):

●​ A real pod is created on k8s.
●​ The pod is processed and an AllocationAsk is created.
●​ The scheduler processes the AllocationAsk (more detail below) and replaces a

placeholder with the real allocation.

3

Application submit handling

Total placeholder size
The application if requesting one or more TaskGroups should provide the total size of all the
TaskGroup members it is going to request. The total resource size is required for the case
that the application is scheduled in a queue with a resource limit set.
The value is important for three cases:

1.​ gang request is larger than the queue quota
2.​ start of scheduling reservations
3.​ resource pressure while scheduling reservations

Further detail will be given below in scheduling in queues with a quota set

The information passed on from the shim should be part of the AddApplicationRequest.
Detailed information on the build up of the taskGroup(s) or the number of members are not
relevant. The total resource requested by all taskGroup members is calculated using:

 𝑡𝑎𝑠𝑘𝑔𝑟𝑜𝑢𝑝 𝐴𝑠𝑘 = # 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 * 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑝𝑒𝑟 𝑚𝑒𝑚𝑏𝑒𝑟

 𝑡𝑜𝑡𝑎𝑙 𝑝𝑙𝑎𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝐴𝑠𝑘 = ∑ (𝑡𝑎𝑠𝑘𝑔𝑟𝑜𝑢𝑝𝑠 𝐴𝑠𝑘)

This total placeholderAsk is added as an optional field to the AddApplicationRequest
message. The calculation can be made by the shim based on the CRD or annotation
provided in the pod description.

If the placeholderAsk is larger than the queue quota set on the queue the application must
be rejected. This rejection is based on the fact that we cannot in any way honor the request
For all other cases the application is accepted and will be scheduled as per normal.

Handling queue with a FAIR sort policy
If an application is submitted to a queue that has a FAIR sort policy set it must be rejected.
Queue sorting for the queue that an application with gang requests runs in must be set to
FIFO or StateAware.

Other queue policies cannot guarantee that there is only one New application processed at a
time. In the case of the FAIR policy we could be allocating multiple New applications at the
same time making quota management impossible to enforce. The other side effect of using
FAIR as a policy could be that we get multiple applications with only a partial allocated
guarantee.
Auto scaling can be triggered due to the fact that the core can not place the placeholders on
any node. In case the queue would use the FAIR sorting this could lead to other applications
taking the scaled up nodes instead of the placeholders again breaking the gang.

4

Scheduling in queues with a quota set
The main case already described above is handling a total placeholder request size that is
larger than the quota set on the queue. When the application is submitted we can already
assess that we cannot satisfy that requirement and reject the request.

In the case that the total placeholder ask does fit in the queue we should not start scheduling
until there are enough resources available in the queue to satisfy the total request. However
this does not stop scheduling of other applications in the queue(s). Applications that are
already running in the queue could ask for more resources. From an application perspective
there is no limit set on the resource it can request. The gang defined on the application is a
guaranteed number of resources, not a maximum number of resources the application can
request.

This is complicated by the fact that we have a queue hierarchy. There is the possibility that
the quota is not set directly on the queue the application is running. It could be set on one of
the parent queues. This case could become complex and we need to make sure that we
keep in mind that we could live lock the scheduling.

In this first phase we should focus on the case that the gang resources requested are also
the maximum number of resources the application will request. When we look at the queues
we should focus on a single queue level with quotas.
These two assumptions are correct for the spark use case without dynamic allocation using
a dynamic mapping from a namespace to a queue.
Furthermore we assume that the quota set on the queue can be totally allocated. If the
cluster does not have enough resources the cluster will scale up to the size needed to
provide all queues with their full quota.

The follow up should add further enhancements for deeper hierarchies and dynamic
allocation support. This could also leverage preemption in certain use cases, like preempting
allocations from applications over their total gang size.
Further enhancements could be added by allowing specifying the time and application will
wait for the placeholders to be allocated or the time to start using the held resources.

Scheduler logic changes
The scheduler logic change needs to account for two parts of cycle:

●​ The placeholder asks and their allocation.
●​ The allocation replacing the placeholder.

The basic assumption is that all pods will generate a placeholder pod request to the core.
This includes the pod that triggered the application creation if we do not use the application
CRD. This assumption is needed to make sure that the scheduler core can behave in the
same way for both ways of submitting the application. The placeholder pods must be
communicated to the core before the real pod.

Queue sorting for the queue that the application runs in must be set to FIFO or StateAware.
Other queue policies cannot guarantee that there is only one New application processed at a

5

time. In the case of the FAIR policy we could be allocating multiple New applications at the
same time making quota management impossible to enforce. The other side effect of using
FAIR as a policy could be that we get multiple applications with only a partial allocated
guarantee.
Auto scaling can be triggered due to the fact that the core can not place the placeholders on
any node. In case the queue would use the FAIR sorting this could lead to other applications
taking the scaled up nodes instead of the placeholders again breaking the gang.

Changes for the placeholder AllocationAsks are the first step. As part of the creation of the
application the AllocationAsks get added. The addition of an AllocationsAsk normally will
trigger the application state change as per the scheduling cycle. It moves the Application
from a New state to an Accepted state. This is as per the current setup, and does not
change.

However in the case that the AllocationAsk has the placeholder flag set the allocation should
not trigger a state change, the application stays in Accepted state. AllocationAsks are
processed until the application has no pending resources. AllocationAsks that do not have a
placeholder flag set should be ignored as a safety precaution. All resulting Allocations for the
placeholder pods are confirmed to the shim as per the normal steps. This process continues
until there are no more placeholder pods to be allocated.

The shim at that point should create the AllocationAsk for the real pod(s) that it has buffered.
The core cannot and must not assume that there is only one task group per application. The
core is also not in the position to assume that it has received all AllocationAsks that belong
to the task group if option 1 as described above is used by a shim. This is also why we have
the assumption that every pod creates a placeholder request to the core.

The second change is the replacement of the placeholder pods with the real pods. The shim
creates an AllocationAsk with the taskGroupName set but the placeholder flag is not set.

The process described here lines up with the process for generic pre-emption. An allocation
is released by the core and then confirmed by the shim. For gang scheduling we have a
simple one new to one release relation in the case of pre-emption we can use the same flow
with a one new to multiple release relation.

The scheduler processes the AllocationAsk as follows:

1.​ Check if the application has an unreleased allocation for a placeholder allocation with
the same taskGroupName. If no placeholder allocations are found a normal
allocation cycle will be used to allocate the request.

2.​ A placeholder allocation is selected and marked for release. A request to release the
placeholder allocation is communicated to the shim. This must be an async process
as the shim release process is dependent on the underlying K8s response which
might not be instantaneous.​
NOTE: no allocations are released in the core at this point in time.

3.​ The core “parks” the processing of the real AllocationAsk until the shim has
responded with a confirmation that the placeholder allocation has been released.​
NOTE: locks are released to allow scheduling to continue

6

4.​ After the confirmation of the release is received from the shim the “parked”
AllocationAsk processing is finalised.

5.​ The AllocationAsk is allocated on the same node as the placeholder used.
●​ On success: a new Allocation is created.
●​ On Failure: try to allocate on a different node, if that fails the AllocationAsk

becomes unschedulable triggering scale up.
The removal of the placeholder allocation is finalised in either case. This all needs to
happen as one update to the application, queue and node.

6.​ Communicate the allocation back to the shim (if applicable, based on step 5)

Application completion
Application completion has been a long standing issue. Currently applications do not
transition to a completed state when done. The current states for the application are
documented here. However at this point in time an application will not reach the completed
state and will be stuck in waiting.
This provides a number of issues specifically around memory usage and cleanup of queues
in long running deployments.

Definition
Since we cannot rely on the application, running as pods on Kubernetes, to show that it has
finished we need to define when we consider an application completed. At this point we are
defining that an application is completed when it has been in the waiting state for a defined
time period. An application enters the waiting state at the time that there are no active
allocations (allocated resources > 0) and pending allocation asks (pending resources > 0).

The transition to a waiting state is already implemented. The time out of the waiting state is
new functionality.

Placeholders are not considered active allocations. Placeholder asks are considered
pending resource asks. These cases will be handled in the Clean up below.

Clean up
When we look at gang scheduling there is a further issue around unused placeholders,
placeholder asks and their cleanup. Placeholders could be converted into real allocations at
any time there are pending allocation asks or active allocations.
Placeholder asks will all be converted into placeholder allocations before the real allocations
are processed.

Entry into the waiting state is already handled. If new allocation asks are added to the
application it will transition back to a running state. At the time we entered the waiting state.
there were no pending requests or allocated resources. There could be allocated
placeholders.

For the entry into the waiting state the application must be clean. However we can not
guarantee that all placeholders will be used by the application during the time the application

7

http://yunikorn.apache.org/docs/next/design/scheduler_object_states

runs. Transitioning out of the waiting state into the completed state requires no (placeholder)
allocations or asks at all. The second case that impact transitions is that not all placeholder
asks are allocated and the application thus never requests any real allocations. These two
cases could prevent an application from transitioning out of the accepted or the waiting state.

Processing in the core thus needs to consider two cases that will impact the transition out of
specific states:

1.​ Placeholder asks pending (exit from accepted)
2.​ Placeholders allocated (exit from waiting)

Placeholder asks pending:
Pending placeholder asks are handled via a timeout. An application must only spend a
limited time waiting for all placeholders to be allocated. This timeout is needed because an
application’s partial placeholders allocation may occupy cluster resources without really
using them.
An application could be queued for an unknown time, waiting for placeholder allocation to
start. The timeout for placeholder asks can thus not be linked to the creation of the
application or the asks. The timeout must start at the time the first placeholder ask is
allocated.
The application cannot request real allocations until all placeholder asks are allocated. A
placeholder ask is also tracked by the shim as it represents a pod. Releasing an ask in the
core requires a message to flow between the core and shim to release that ask. However in
this case the timeout for allocating placeholder asks triggers an application failure. When the
timeout is triggered and placeholder asks are pending the application will transition from the
state it is in, which can only be accepted, to killed.

The application state for this case can be summarised as:

●​ Application status is accepted
●​ Placeholder allocated resource is larger than zero, and less than the placeholderAsk

from the AddApplicationRequest
●​ Pending resource asks is larger than zero

Entering into the killed state must move the application out of the queue automatically.
The state change and placeholder allocation releases can be handled in a single
UpdateResponse message. The message will have the following content:

●​ UpdatedApplication for the state change of the application
●​ one or more AllocationRelease messages, one for each placeholder, with the

TerminationType set to TIMEOUT
●​ one or more AllocationAskRelease messages with the TerminationType set to

TIMEOUT

The shim processes the AllocationAskRelease messages first, followed by the
AllocationResponse messages, and finally the UpdatedApplication message. The application
state change to the killed state on the core side is only dependent on the removal of all
placeholders pods, not on a response to the UpdatedApplication message.

8

Combined flow for the shim and core during timeout of placeholder:
●​ The core times out the placeholder allocation. (1)
●​ The placeholder Allocations removal is passed to the shim. (2)
●​ All placeholder Allocations are released by the shim, and communicated back to the

core.
●​ The placeholder AllocationAsks removal is passed to the shim. (3)
●​ All placeholder AllocationAsks are released by the shim, and communicated back to

the core.
●​ After the placeholder Allocations and Asks are released the core moves the

application to the killed state removing it from the queue (4).
●​ The state change is finalised in the core and shim. (5)

Allocated placeholders:
Leftover placeholders need to be released by the core. The shim needs to be informed to
remove them. This must be triggered on entry of the completed state. After the placeholder
release is requested by the core the state transition of the application can proceed. The core
will process the AllocationRelease messages for placeholder allocations that come back
from the shim with the TerminationType set to TIMEOUT as normal without triggering a
state change.

The state change and placeholder allocation releases can be handled in a single
UpdateResponse message. The message will have the following content:

●​ UpdatedApplication for the state change of the application
●​ zero or more AllocationRelease messages, one for each placeholder, with the

TerminationType set to TIMEOUT

The shim processes the AllocationResponse messages first followed by the
UpdatedApplication message. The application state change to the completed state on the
core side is only dependent on the removal of all placeholders pods, not on a response to
the UpdatedApplication message.

Entering into the completed state will move the application out of the queue automatically.
This should also handle the case we discussed earlier around a possible delayed processing

9

of requests from the shim as we can move back from waiting to running if needed. A
completed application should also not prevent the case that was discussed around cron like
submissions using the same application ID for each invocation. A completed application
with the same application ID must not prevent the submission of a new application with the
same ID.

Combined flow for the shim and core during cleanup of an application:

●​ A pod is released at the Kubernetes layer. (1)
●​ The shim passes the release of the allocation on to the core. (2)
●​ The core transitions the application to a waiting state if no pending or active

allocations. (3)
●​ The waiting state times out and triggers the clean up. (4)
●​ The placeholder Allocations removal is passed to the shim. (5)
●​ All placeholder Allocations are released by the shim, and communicated back to the

core.
●​ After all placeholders are released the core moves the application to the completed

state removing it from the queue (6).
●​ The state change is finalised in the core and shim. (7)

Application recovery
During application recovery the placeholder pods are recovered as any other pod on a node.
These pods are communicated to the core by the shim as part of the node as an existing
allocation. Existing allocations do not have a corresponding AllocationAsk in the core. The
core generates an AllocationAsk based on the recovered information.
For gang scheduling the AllocationAsk contains the taskGroupName and placeholder flag.
During recovery that same information must be part of the Allocation message. This is due to
the fact that the same message is used in two directions, from the RM to the scheduler and
vice versa means we need to update the message and its processing.

If the information is missing from the Allocation message the recovered allocation will not be
correctly tagged in the core. The recovered allocation will be seen as a regular allocation.

10

This means it is skipped as part of the normal allocation cycle that replaces the
placeholders.
The logic change only requires that the recovery of existing allocations copies the fields from
the interface message into the allocation object in the core.

Interface changes
Multiple changes are needed to the communication between the shim and the core to
support the gang information needed.
An application must provide the total size of the placeholder requests to prevent accepting
an application that can never run.
The current object that is sent from the shim to the core for allocation requests is defined in
the AllocationAsk. The Allocation, as the result message passed back from the scheduler
core does not change. For recovery, which uses the same Allocation message, from the
shim to the core, however must contain the gang related fields. Gang related fields must be
added to both messages.
The allocation release request and response request need to support bidirectional traffic and
will need to undergo major changes.

AddApplication
The AddApplicationRequest message requires a new field to communicate the total
placeholder resource request that will be requested. The field is used to reject the
application if it is impossible to satisfy the request. It can also be used to stop the core from
scheduling any real pods for that application until all placeholder pods are processed.

In patched message form that would look like:

message AddApplicationRequest {
...
 // The total amount of resources gang placeholders will request
 Resource placeholderAsk = 7;
...
}

AllocationAsk
The first part of the change is the base information for the task group. This will require an
additional optional attribute to be added. The content of this optional attribute is a name, a
string, which will be mapped to the name of the task group. The field can be present on a
real allocation and on a placeholder.

Proposed name for the new field is: taskGroupName

To distinguish normal AllocationAsks and placeholder AllocationAsks a flag must be added.
The flag will never have more than two values and thus maps to a boolean. As the default
value for a boolean is false the field should show the fact that it is an AllocationAsk that
represents a placeholder as true.

Proposed name for the field is: placeholder

11

In patched message form that would look like:

message AllocationAsk {
...
 // The name of the TaskGroup this ask belongs to
 string taskGroupName = 10;
 // Is this a placeholder ask (true) or a real ask (false), defaults to false
 // ignored if the taskGroupName is not set
 bool placeholder = 11;
...
}

The last part of the task group information that needs to be communicated is the size of the
task group. This does not require a change in the interface as the current AllocationAsk
object can support both possible options.
Requests can be handled in two ways:

A.​ Each member of the task group is passed to the core as a separate AllocationAsk
with a maxAllocations, or the ask repeat, of 1

B.​ The task group is considered one AllocationAsk with a maxAllocations set to the
same value as minMember of the task group information.

With option A the shim will need to generate multiple AllocationAsk objects and pass each to
the core for scheduling, Each AllocationAsk is linked to one pod. Option B will only generate
one AllocationAsk for all placeholder pods. Option B requires less code and has less
overhead on the core side. However the logic on the shim side might be more complex as
the returned allocation needs to be linked to just one pod.

Proposal is to use option: A

Allocation
Similar to the change for the AllocationAsk the Allocation requires additional optional
attributes to be added. The new fields distinguish a normal Allocation and placeholder
Allocations on recovery. The same rules apply to these fields as the ones added to the
AllocationAsk.
The content of this optional attribute is a name, a string, which will be mapped to the name
of the task group. The field can be present on a real allocation and on a placeholder.

Proposed name for the new field is: taskGroupName

The flag will never have more than two values and thus maps to a boolean. As the default
value for a boolean is false the field should show the fact that it is an Allocation that
represents a placeholder as true.

Proposed name for the field is: placeholder

In patched message form that would look like:

message Allocation {
...
 // The name of the TaskGroup this allocation belongs to

12

 string taskGroupName = 11;
 // Is this a placeholder allocation (true) or a real allocation (false), defaults to false
 // ignored if the taskGroupName is not set
 bool placeholder = 12;
...
}

AllocationRelease Response and Request
The name for the messages are based on the fact that the release is always triggered by the
shim. In case of preemption and or gang scheduling the release is not triggered from the
shim but from the core. That means the message name does not cover the usage. A
response message might not have an associated request message. It could be used to
indicate direction but that is in this case confusing.

When a release is triggered from the core, for preemption or the placeholder allocation, a
response is expected from the shim to confirm that the release has been processed. This
response must be distinguished from a request to release the allocation initiated by the shim.
A release initiated by the shim must be followed by a confirmation from the core to the shim
that the message is processed. For releases initiated by the core no such confirmation
message can or must be sent. In the current request message there is no way to indicate
that it is a confirmation message.

To fix the possible confusing naming the proposal is to merge the two messages into one
message: AllocationRelease.
The AllocationReleaseRequest is indirectly part of the UpdateRequest message as it is
contained in the AllocationReleasesRequest. The AllocationReleaseResponse is part of the
UpdateResponse message. The flow-on effect of the rename and merge of the two
messages is a change in the two messages that contain them. The message changes for
UpdateResponse and AllocationReleasesRequest are limited to type changes of the existing
fields.

Message Field
ID

Old type New type

UpdateResponse 3 AllocationReleaseResponse AllocationRelease

AllocationReleasesRequest 1 AllocationReleaseRequest AllocationRelease

In patched message form that would look like:

message UpdateResponse {
...
 // Released allocation(s), allocations can be released by either the RM or scheduler.
 // The TerminationType defines which side needs to act and process the message.
 repeated AllocationRelease releasedAllocations = 3;
...
}

13

message AllocationReleasesRequest {
 // Released allocation(s), allocations can be released by either the RM or scheduler.
 // The TerminationType defines which side needs to act and process the message.
 repeated AllocationRelease releasedAllocations = 1;
...
}

The merged message AllocationRelease will consist of:

Field name Content type Required

partitionName string yes

applicationID string no

UUID string no

terminationType TerminationType yes

message string no

Confirmation behaviour of the action should be triggered on the type of termination received.
The core will confirm the release to the shim of all types that originate in the shim and vice
versa.
A confirmation or response uses the same TerminationType as was set in the original
message. An example of this is a pod that is removed from K8s will trigger an
AllocationRelease message to be sent from the shim to the core with the TerminationType
STOPPED_BY_RM. The core processes the request removing the allocation from the
internal structures, and when all processing is done it responds to the shim with a message
using the same TerminationType. The shim can ignore that or make follow up changes if
needed.
A similar process happens for a release that originates in the core. Example of the core
sending an AllocationRelease message to the shim using the TerminationType
PREEMPTED_BY_SCHEDULER. The shim handles that by releasing the pod identified and
responds to the core that it has released the pod. On receiving the confirmation that the pod
has been released the core can progress with the allocation and preemption processing.

In patched message form that would look like:

message AllocationRelease {
 enum TerminationType {
 STOPPED_BY_RM = 0;
 TIMEOUT = 1;
 PREEMPTED_BY_SCHEDULER = 2;
 PLACEHOLDER_REPLACED = 3;
 }

 // The name of the partition the allocation belongs to
 string partitionName = 1;
 // The application the allocation belongs to

14

 string applicationID = 2;
 // The UUID of the allocation to release, if not set all allocations are released for
 // the applicationID
 string UUID = 3;
 // The termination type as described above
 TerminationType terminationType = 4;
 // human-readable message
 string message = 5;
}

TerminationType
The currently defined TerminationType values and specification of the side that generates
(Sender) and the side that actions and confirms processing (Receiver):

Value Sender Receiver

STOPPED_BY_RM shim core

TIMEOUT * core shim

PREEMPTED_BY_SCHEDULER * core shim

* currently not handled by the shim, core or both

When the placeholder allocation gets released the AllocationReleaseResponse is used to
communicate the release back from the core to the shim. The response contains an
enumeration called TerminationType and a human readable message. For tracking and
tracing purposes we should add a new TerminationType specifically for the placeholder
replacement. The shim must take action based on the type and confirm the allocation
release to the core.
It should provide enough detail so we do not have to re-use an already existing type or the
human readable message. The human readable format can still be used to provide further
detail on which new allocation replaced the placeholder.
​ Proposal is to add: PLACEHOLDER_REPLACED

Value Sender Receiver

PLACEHOLDER_REPLACED core shim

As part of the Scheduler Interface cleanup (YUNIKORN-486) the TerminationType should be
extracted from the AllocationRelease and AllocationaskRelease message. It is an
enumeration that can be shared between multiple objects. YUNIKORN-547 has been logged
to handle this as it has an impact on the code outside of the scope of gang scheduling.

AllocationAskRelease Response and Request
The allocation ask release right now can only be triggered by the shim. In order for the core
to perform the cleanup when the placeholder allocation times out, we need to make this a
bidirectional message. Similarly to the Allocation we would rename the

15

https://issues.apache.org/jira/browse/YUNIKORN-486
https://issues.apache.org/jira/browse/YUNIKORN-547

AllocationAskReleaseRequest to AllocationAskRelease, so we can use this message in both
directions:

message AllocationReleasesRequest {
...
 // Released allocationask(s), allocationasks can be released by either the RM or
 // scheduler. The TerminationType defines which side needs to act and process the
 // message.
 repeated AllocationAskRelease allocationAsksToRelease = 2;
}

Similar processing logic based on the TerminationType which is used for allocations should
be used for ask releases. In patched message form that would look like:

message AllocationAskRelease {
 enum TerminationType {
 STOPPED_BY_RM = 0;
 TIMEOUT = 1;
 PREEMPTED_BY_SCHEDULER = 2;
 PLACEHOLDER_REPLACED = 3;
 }
...
 // The termination type as described above
 TerminationType terminationType = 4;
...
}

Confirmation behaviour of the action should be triggered on the type of termination received.
The core will confirm the release to the shim of all types that originate in the shim and vice
versa.
A confirmation or response uses the same TerminationType as was set in the original
message.

Scheduler storage object changes

AllocationAsk
In line with the changes for the communication the objects in the scheduler also need to be
modified to persist some of the detail communicated. The AllocationAsk that is used in the
communication has an equivalent object inside the scheduler with the same name. This
object needs to be able to store the new fields proposed above.

Proposed new fields: taskGroupName and placeholder.

In the current interface specification a field called executionTimeoutMilliSeconds is defined.
This is currently not mapped to the object inside the scheduler and should be added. Time or
Duration are stored as native go objects and do not include a size specifier.
​ Proposed new field: execTimeout

16

Allocation
After the allocation is made an Allocation object is created in the core to track the real
allocation. This Allocation object is directly linked to the application and should show that the
allocation is a placeholder and for which task group. This detail is needed to also enable the
correct display of the resources used in the web UI.
The propagation of the placeholder information could be achieved indirectly as the allocation
object references an AllocationAsk. This would require a lookup of the AllocationAsk to
assess the type of allocation. We could also opt to propagate the data into the Allocation
object itself. This would remove the lookup and allow us to directly filter allocations based on
the type and or task group information.
From a scheduling and scheduler logic perspective the indirect reference is not really
desirable due to the overhead of the lookups required. This means that the same fields
added in the AllocationAsk are also added to the Allocation object.

Proposed new fields: taskGroupName and placeholder.

To support the release of the allocation being triggered from the core tracking of the release
action is required. The release is not final until the shim has confirmed that release. However
during that time period the allocation may not be released again.

Proposed new field: released

At the point that we replace the placeholder with a real allocation we need to release an
existing placeholder. The Allocation object allows us to specify a list of Allocations to release.
This field was added earlier to support preemption. This same field will be reused for the
placeholder release.

Application
The AddApplicationRequest has a new field added that needs to be persisted in the object
inside the scheduler.

Proposed new field: placeholderAsk

In the current interface specification a field called executionTimeoutMilliSeconds is defined.
This is currently not mapped to the object inside the scheduler and should be added. Time or
Duration are stored as native go objects and do not include a size specifier.
​ Proposed new field: execTimeout

The application object should be able to track the placeholder allocations separately from the
real allocations. The split of the allocation types on the application will allow us to show the
proper state in the web UI.
​ Proposed new field: allocatedPlaceholder

Queue & Node
No changes at this point. The placeholder allocations should be counted as “real” allocations
on the Queue and Node. By counting the placeholder as normal the quota for the queue is
enforced as expected. The Node object needs to also show normal usage to prevent
interactions with the autoscaler.

17

	Gang Scheduling Implementation
	Change log
	Goals
	Non Goals
	Generic flow
	Application submit handling
	Total placeholder size
	Handling queue with a FAIR sort policy

	Scheduling in queues with a quota set
	Scheduler logic changes
	Application completion
	Definition
	Clean up

	Application recovery
	Interface changes
	AddApplication
	AllocationAsk
	Allocation
	AllocationRelease Response and Request
	TerminationType
	AllocationAskRelease Response and Request

	Scheduler storage object changes
	AllocationAsk
	Allocation
	Application
	Queue & Node

