Rootid: Setting up Behat Testing on a Mac

with Mink and Selenium

Ok, you’ve got a choice. You can either get this stuff set up and running in your local
environment, or you can get this stuff set up and running using Docker containers. Or
both, if that’s how you roll... Whichever you choose, there’s also a certain amount of
setup you have to do for each site.

Setting up Behat on your local

Use homebrew to install chromedriver (so selenium can drive chrome), geckodriver (so
selenium can drive firefox), phantomjs (which is what my team actually uses for our
CircleCl testing) and the selenium server (so behat's selenium can talk to the drivers):

brew install geckodriver selenium-server-standalone
brew cask install chromedriver phantomjs

Full Disclosure Note: I haven’t been able to get Firefox to properly run tests. It
opens and attempts the tests, but Mink’s built-in “I should see” is failing (when it
passes on Chrome and Phantom]JS and the element is, in fact, visible), which is a
rather bad sign... This is both with my local Firefox and the docker container
Firefox, so I’'m thinking there might be something wrong with geckodriver?
Also, Phantom]S has officially been discontinued, and at some point is going to
stop working :(The official recommendation is to use Chrome in headless mode.

Then use brew services to start up the selenium server and set it to restart every time the
computer reboots:

sudo brew services start selenium-server-standalone

You don't need to start chromedriver or geckodriver -- since brew installed them in
Jusr/local/bin, they're in your PATH and selenium knows where to find them.

If you want to run tests using Phantom]JS, you need to launch Phantom]JS in a separate
terminal tab using the command phantomjs --webdriver=8643 before running your
tests.

Note that the number after - -webdriver= is the port that Phantom]S will be
listening on. If it’s conflicting with something else on your computer, you can
change that number, but you’ll need to make sure to open up your behatyml and
change the wd_host port under your phantomjs definition to match. Also note
that Phantom]JS is headless, so while you can tell it to take screenshots there’s
nothing to watch.

If you’d like to set up docker containers instead or in addition, those instructions are
next. Otherwise, jump down to the per site setup.

https://brew.sh/
https://semaphoreci.com/blog/2018/03/27/phantomjs-is-dead-use-chrome-headless-in-continuous-integration.html
https://gist.github.com/megclaypool/be18201422fb7c0fef2ef6bbd7c7f8f5

Setting up Behat in Docker containers

You can also use docker to run standalone Chrome, Firefox, and Phantom]JS nodes. If you
use the debug versions of Chrome and Firefox, you can even watch them run the tests
using VNC. (Phantom]JS is headless, so while you can tell it to take screenshots there’s
nothing to watch.)

First, download and install Docker. Make sure to launch the Docker app -- Docker
commands only work when the app is running.

Then, copy and paste the (rather long but all-one-line) terminal commands:

docker run -d --name chrometest -p 4445:4444 -p 5901:5900 -v
/dev/shm:/dev/shm selenium/standalone-chrome-debug

and/or

docker run -d --name firefoxtest -p 4446:4444 -p 5902:5900 -v
/dev/shm:/dev/shm selenium/standalone-firefox-debug

and/or

docker run -d --name phantomtest -p 8910:8910 wernight/phantomjs phantomjs
--webdriver=8910

Each of those commands is telling docker to build and run a container in detached mode.
Next you give each container a reasonable name (otherwise Docker will make up a weird
name for you). The -p is telling docker that you want to map

some_port on_your local:some_port_inside the docker container. So you'll use port 4445
on your local to hook up to port 4444 inside the chrometest container, for example. 5900
is the VNC port, so you'll VNC into 5901 to watch your chrometest container and 5902 to
watch your firefoxtest container. The -v business is dealing with memory for your
container. The last bit is the name of the image Docker will use to build your container. If
you haven't already downloaded the image, Docker will automatically do so when you
try to build a container based on an image you don't have.

Now you can start and stop these containers from the terminal using:

https://gist.github.com/megclaypool/be18201422fb7c0fef2ef6bbd7c7f8f5
https://download.docker.com/mac/stable/Docker.dmg

docker start <container_name> <maybe you want_to start another_one too>

and

docker stop <same deal>

eg: docker start chrometest or docker stop firefoxtest phantomtest
Just make sure you’ve started a container before you try to use it! (Note that containers
automatically stop when you shutdown/restart your computer.)

The stuff below goes in your behatyml file (discussed in the per site setup below). As you
can see, the selenium wd_host port should match the port you set up your docker
containers to listen on.

dockerchrome:
extensions:
Behat\MinkExtension:
browser_name: chrome
selenium2:
wd_host: 'http://localhost:4445/wd/hub’
dockerfirefox:
extensions:
Behat\MinkExtension:
browser_name: firefox
selenium2:
wd_host: 'http://localhost:4446/wd/hub’
dockerphantomjs:
extensions:
Behat\MinkExtension:
browser_name: phantomjs
selenium2:

wd_host: 'http://localhost:8910/wd/hub’

As long as your container is running, you can use it to run your behat tests using the
terminal command behat <optional single feature filepath> -p <profile name>
eg:behat -p dockerfirefox or behat features/desktop-menu.feature -p
dockerphantomjs. The profile name should match the name in your behat.yml file. If you
want to use a specific profile all the time, you can change the default values in the
behatyml.

Setup for each site

Make a new folder someplace logical for the site you want to test, and navigate to it in
terminal.

Install behat, mink, goutte, and selenium?2:

composer require behat/mink-extension behat/mink-goutte-driver
behat/mink-selenium2-driver --dev

Create a symlink so you can just type "behat” to run tests:

In -s vendor/behat/behat/bin/behat behat

Initialize behat to create a couple of files and folders:

behat --init

Create a behatyyml file in the root of your site’s test directory and paste in the following:

Don't forget to change the base url!

call specific browsers from the terminal using their profile. eg: behat
-p firefox or behat features/test.feature -p chrome

Note that the default is chrome, but you can replace it with one of the
options and change the default

default:
extensions:
Behat\MinkExtension:
base_url: https://site_you want_to.test
javascript_session: selenium2
goutte: ~
browser_name: chrome
browser_name: phantomjs
browser _name: firefox

selenium2:
wd_host: "http://localhost:4444/wd/hub"
capabilities:

marionette: null 1is required by
mink-extension 2.3!!!1]
Without 1it, firefox Llaunches

(even 1if you specified chrome)
but does nothing
marionette: null

suites:
default:
contexts:
- FeatureContext
chrome:
extensions:
Behat\MinkExtension:
browser_name: chrome
firefox:
extensions:
Behat\MinkExtension:
browser_name: firefox
selenium2:
capabilities:
marionette: true
phantomjs:
extensions:
Behat\MinkExtension:
browser_name: phantomjs
dockerchrome:
extensions:
Behat\MinkExtension:
browser_name: chrome
selenium2:
wd _host: 'http://localhost:4445/wd/hub’
dockerfirefox:
extensions:
Behat\MinkExtension:
browser_name: firefox
selenium2:
wd_host: 'http://localhost:4446/wd/hub’
dockerphantomjs:
extensions:

Behat\MinkExtension:

browser_name: phantomjs
selenium2:
wd _host: 'http://localhost:8910/wd/hub’

Edit the features/bootstrap/FeatureContext.php, so it contains the following:
Note: You especially want to get the MinkContext stuff, as it comes with all sorts
of useful built-in definitions! To see what MinkContext adds, before you edit the
FeatureContext.php file, type behat -d1 in the terminal. (That’s the command
that lists all the definitions Behat knows about). The results will be...
underwhelming. Do it again after you’ve added the MinkContext stuff <

<?php

use Behat\Behat\Context\Context;

use Behat\Gherkin\Node\PyStringNode;

use Behat\Gherkin\Node\TableNode;

use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\MinkExtension\Context\MinkContext;

/**
* Defines application features from the specific context.
*/
class FeatureContext extends MinkContext implements Context,
SnippetAcceptingContext
{
/**
* Initializes context.
*
* Every scenario gets its own context instance.
* You can also pass arbitrary arguments to the
* context constructor through behat.yml.
*/
public function __construct()
{
}

Assuming that at some point you’re going to use git to sync these tests with a repository
somewhere, create /.gitignore and paste in:

Don't sync composer's vendor folder!
vendor

If you use your local firefox or chrome to run tests, you’ll see a new browser window
open and you can watch the browser run through the tests. If you’d like to do the same
thing with the docker containers, you can use the VNC port you set up. Macs have a VNC
client built in, called Screen Sharing. (On my Mac it’s hidden in
System/Library/CoreServices/Applications.) The easiest way to launch it is to search for it
in spotlight. Once you’ve got the Screen Sharing app open, type the address into the
popup box. Use localhost:5901 to connect to the chrometest docker container and
localhost.5902 to connect to the firefoxtest container.

Screen Sharing

Connect To: | localhost:5901

Cancel | (LIS

It will then ask you for the password to connect to the docker container. The Selenium
folks, who made the containers, set them up with the password “secret”.

ﬁ Enter your password for "localhost”
Password: essssss
Remember this password in my keychain

S Connect

Then you’ll be greeted with this exciting screen:

https://stackoverflow.com/questions/20778771/what-is-the-difference-between-0-0-0-0-127-0-0-1-and-localhost
https://stackoverflow.com/questions/20778771/what-is-the-difference-between-0-0-0-0-127-0-0-1-and-localhost

< Workspace 1 » 05 Mar, Mon 13:25:46 « » |

And it’ll just sit there, doing nothing...

In order to make things happen, you need to hop over to your terminal and run a test
using that docker container. eg behat -p dockerchrome.

Then, just like on your local, a browser window will pop up and you’ll be able to watch
your tests run:

[] o] 289d61e3f5¢2:99.0

ra
'Sl "~
C
IF

ontro Scaling Clipboard

Sex + Health + You %
& X & Secure | htips://teensource.org LA s

chreme is being controlled by automated test software x

gmu 0006

keensourceol
FIND ACLNG BRTH CONTROL STOS ~RELATIONSHPS BLOSS KNOW YOUR RIGHTS

WHAT'S HOT
Guys that hook up with other
guys 1nd STDs!

Teen Dating Viclence- What
You Can Do

SIGN UP FOR HOOKUP SUBSCABE

Waiting for wiere voutuba. kie s 14 /
<+ Workspace 1 » 05 Mar, Mon 13:27:53 « » { Sex + Health + You | Sexual health info for youth to encourage informed decision making - Google Chrome

Now that you’ve got your test environment set up, you can focus on actually *writing*
your tests &

	Rootid: Setting up Behat Testing on a Mac
	with Mink and Selenium

