
Page 1 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

Carbon Language - http://github.com/carbon-language

Open discussions
minutes (2021
Aug-Dec archive)

PLEASE DO NOT SHARE OUTSIDE
CARBON FORUMS

2021-12-23
● Attendees: josh11b, mconst
● Mixins

○ Wrote up issue #1000
○ Expect the data member option to be popular
○ Concern: awkward for a list container class to find the corresponding intrusive

mixin member to use
○ May end up putting more API than you'd like into the intrusive mixin member
○ Could possibly use a "pointer to member" type parameter to establish that link

once
● Operator overloading

○ Main concerns: implicit conversion issue, cyclic dependencies between impls,
symmetry requirements for CommonType and the two comparisons

○ How okay is it that the interface you implement is different from the interface you
use as a constraint?

■ For comparison, you might implement A as ComparisonI(B) and use
T:! ComparisonC(A) as the constraint with T == B.

■ Do we want to consistently make these different?
■ [mconst] If we persistently need to have two interfaces, one the user

implements, and another that is computed by some magic from the
former, maybe that indicates that this isn't the right extension mechanism

■ issue #998 considers other options
● specially named members are less typing, but not as flexible

where they can be defined, and are less natural for requiring
multiple functions to be implemented

■ If using two interfaces becomes a best practice, how convenient vs.
painful does it end up?

■ Would it be a useful feature to be able to use different things using the
same name based on whether it is being implemented or being used as a
constraint?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
http://github.com/carbon-language
https://github.com/carbon-language/carbon-lang/pull/998

Page 2 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Maybe enough to distinguish between "explicitly implemented by the user"
vs. "implemented via this block of automatic implementation code"?

● Added implementations would be things like implicit conversions
or symmetric comparison

● This would allow you to break the cycle, though a cycle detector
would still be needed

● Would be more natural for the user
● Would give a place to put in things like "give an error if both A as

Comparison(B) and B as Comparison(A) are implemented"
● Equivalent to being able to say: weak impl instead of impl, and be

able to express a constraint "is strongly implemented"
○ a default impl is strong
○ a default constraint accepts weak impls
○ but probably don't want people to write their own weak

impls of other people's interfaces
○ maybe only the interface author is allowed to write weak

impls, and also "is strongly implemented", but that isn't as
crucial.

● Advantages over 2 interfaces:
○ more natural for the user; feels like you are implementing a

interface instead of opting into some arbitrary
customization point that eventually causes an interface to
be implemented

○ fewer mistakes getting the name wrong
■ can prevent people from implementing the

constraint version using a final blanket impl
■ harder to prevent people from using the implement

version as a constraint
○

2021-12-21
● Attendees: josh11b, mconst
● Dynamic scoping

○ Idea: reverse generics in order to define a static logging class
○ Allocators?

■ Games will know that some type will always want to allocate from the
"level arena", which it can know about statically

■ RPCs might have an arena per RPC call
● protos will want to allocate from that arena
● some allocations in the RPC are *not* from the arena, for example

state updates
■ What about standard containers?

● In C++ they default to a standard global allocator
● Other case is pre-allocated container with a fixed maximum size

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 3 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ calling code provides max size as a template parameter,
memory is part of the type's size, container never touches
the dynamic allocator

○ C++ standard allocator mechanism didn't make it easy to
just use std::vector with a custom allocator

● Example: string interning, map from hash to pointer into arena
with length + string data

● temporary data structures using standard containers whose
lifetime is the same as an RPC

■ Thread-local allocator, to avoid slowdown from accessing thread-local
storage

● ideal would be the compiler automatically hoisting out the
thread-local lookup out of code that is allocating a lot

■ Conclusion: allocators are not implicitly dynamically scoped. Sometimes
they are explicit parameters (like in RPCs). Trying to make a class have a
general pluggable allocator frequently doesn't work as well as making a
new class (interned strings and fixed max size containers).

● Carbon: mixins
○ data members best handled by making mixins into data members, then base

classes, and finally interfaces/constraints
○ interfaces/constraints and base classes both have ways of saying methods are

required/defaulted/provided, but are different and have different defaults
○ Most minimal thing: data members could just be allowed to know their

containing type and their offset within it
■ Containing type wouldn't even have to say this is a mixin, this is pretty

safe
■ Enough for things like intrusive linked lists
■ Would have to manually forward any functions/methods that you want to

be part of your type's API
■ Serializer mixin is going to iterate through all data members, but may

need to recurse to find which have members with a Serializer type
● Awkward if members of Serializer are dependent on the main type
● For Serializer specifically, probably only the body of the Serialize

method is dependent
● Would be nice if metaprogramming isn't affecting the interfaces of

types, for incremental compilation and IDE completion
○ Could also allow base classes to be parameterized by their final derived type

■ Like CRTP in C++, but more reliable
■ Concern is wanting to get rid of multiple inheritance

○ No use cases we could think of for multiple serializer members of a type
○ what about mixin like a base class minus the things that make multiple

inheritance scary
■ The mixin could use constraints (including template constraints) on the

main type parameter to say that it has certain functions
■ How do you provide a default other than virtual, and we don't want to be

using dynamic dispatch in this case

https://docs.google.com/document/d/162Th0IZTB9kGF0Soq4FXPhyzTwfR44VkJDKdRUoovI4/edit?resourcekey=0-d0i3xEXiuTIUlZKOeNdW3g#
https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 4 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Could just have another keyword (default?)
■ the mixin is not an object, so you can't have a pointer to it, so there is no

situation where you could accidentally call the mixin version when the
main type defines an override

■ So mixin is a keyword used in place of base class
■ members are not allowed to be virtual or abstract, but they can be

default
○ In common between data member approach and base class approach

■ mixin declaration includes a main type parameter, which may be generic
or templated, and may have constraints (has interface, extends base
class, and template constraints like has method or data member)

■ need a way to convert between a pointer to a data member (in the data
member case, this would be the pointer to the mixin; in the base class
case, this would be a pointer to a member of the mixin) and a pointer to
the containing main type

○ Intrusive linked list class has a friend intrusive linked list mixin with the data, but
the class can do the magic conversions

■ need some way to address the mixin of a main type using the parameter
that makes it unique

2021-12-13
● Attendees: josh11b, zygoloid
● Talked about generic plans, with goal of supporting operator overloading

○ principle: open extension points (operator overloading, swap and other ADL
extension points from C++) all are through interfaces, see

Carbon closed function overloading proposal
○ If we don't want A op B to be inconsistent with B op A ever in the standard

library, then would like to only define it once. Example: would like to enforce
consistency ordered and equality comparisons (preferable, not necessary)

○ operator overloading: implicit conversion issue, cyclic dependencies, symmetry
requirements like CommonType, hierarchy of interfaces: the baseline interface,
one with implicit conversions, a homogenous one, numeric

■ existing work defining interfaces for operators
○ a way to abstract over implementation; goal is to be able to define an F that takes

an implementation of X and provides an implementation of Y and Z. Application:
for implicit conversion, for A+B giving a definition of B+A, similarly A<B -> B<A.

● Use cases for dynamic scoping
○ Errors

■ [josh11b] In January, made a proposal where the error handler decides
whether (& which) errors are expected

○ Other effects
■ async
■ Logging

https://docs.google.com/document/d/1uvX_hmw5DVs1SFjnehUUizGnI6C099vqIGfUhfCwBIo/edit#heading=h.6dyyhz5krl9v
https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/blob/17352a8ca72594b7ee4043837fc962e7e28b5e53/proposals/p0168.md#interfaces
https://docs.google.com/document/d/17rWhaH1xVrXzKd9n9HmKIOdUrM3m8dD4-uAAqqJIKdk/edit?resourcekey=0-hHAX7vdkbboB8ie_XTJGVQ

Page 5 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ I/O that can be swapped out for tests
■ Language with effect inference: https://effekt-lang.org/

○ Implicit context object or implicit parameters
■ https://odin-lang.org/docs/overview/#implicit-context-system

○ Concern: pervasive sources errors
■ Rust/Swift happy with having potential exits marked, can't be done if

errors are too pervasive
○ Overflow? Probably undefined behavior in performance mode, exits program in

hardened?
○ Allocation?

■ Some embedded users will want to either forbid allocation or handle
allocation errors

■ Allocators are an application of dynamic scoping in multiple languages
○ Problem with using async for everything is the danger of changing your function

into a state machine with all state on the heap, terrible for performance.
○ Exciting, but a bit experimental for Carbon

■ choices are: too little support (Rust), bespoke support for each effect
(Swift), or exotic general approaches (research languages)

■ Likely set aside for now and come back to, maybe after we go public and
we can draw from the wider community including academia

○ Capabilities?
■ Thread-safety annotations (implemented in Clang using its capabilities

support) are not perfect, but maybe that is because it is hard in C++ to
know when things are destroyed and therefor mutexes are released

■ Capabilities more generally useful for writing secure code (object
capabilities avoid the confused deputy problem), running 3rd party code
with less trust, dependency injecting for tests

2021-12-08
● Attendees: josh11b, mconst, chandlerc, zygoloid
● [josh11] non-wild card impls, but a mismatch between the interface's signature for Add

and the signature used in the type's definition (but we want to allow that difference since
we can perform implicit conversions between the two).

class MyInt {

impl as AddTo(i32) {

let AddResult:! auto = Self;

fn Add[me: Self](x: i64) -> Self { ... }

}

}

● [josh11b] wild card impls, implicit conversion to a single function

class MyInt {

impl as AddTo(T:! ImplicitAs(i32)) {

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://effekt-lang.org/
https://odin-lang.org/docs/overview/#implicit-context-system

Page 6 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

let AddResult:! auto = Self;

fn Add[me: Self](x: i32) -> Self { ... }

}

}

● [zygoloid] One possible principle: ignore the "impl as ..." lines just use the signatures from
the class definition

○ downside: but do you get interface defaults?
● [zygoloid] Other choice: whatever is in the interface is authoritative

○ downside: surprising that the signature written isn't the one in the class
○ downside: unreasonable to support internal wildcard impls

● [josh11b] also evolution risks with this decision -- interfaces might be fine initially to be
defined internally, but adding a function with a particular signature breaks that.

○ hard error vs. having functions you can't call
● [mconst] Do we want to allow internal wildcard impls but you can't call when there is

ambiguity that isn't resolved by the caller
● Two impls with the same function name with the same interface

○ potentially forbidden, but then adding a function to an interface can be a breaking
change if it introduces name conflicts with members of another interface

○ this could be a *permanent* breaking change, where we from then on never can
internally implement both of two interfaces from different libraries

○ internal impls are a bit like inheritance w.r.t. possible breakage
● Evolution concerns are more about internal impls in general
● [mconst] Simplest alternative is to just use T instead of i32 in the function signature
● [chandlerc] Two interfaces: one has ImplicitAs, and calls the other

○ default implementation performs the implicit conversions
○ somehow the interfaces would do this automatically

class MyInt {

fn Add[me: Self](x: i32) -> Self { ... }

external impl as AddTo(T:! ImplicitAs(i32)) {

let AddResult:! auto = Self;

fn Add[me: Self](x: T) -> Self { return me.Add(x as i32); }

}

}

// Possibility 1

interface AddToWithImplicit(T: Type) {

fn Add[me: Self](x: T) -> Self;

// external?

impl [U:! ImplicitAs(T)] as AddTo(U) {

fn Add[me: Self](x: U) -> Self { return me.(AddToWithImplicit(T).Add)(x); }

}

}

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 7 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

class MyInt {

impl as AddToWithImplicit(i32) {

fn Add[me: Self](x: T) -> Self { ... }

}

}

// Possibility 2

interface AddTo(T:! Type) { ... }

interface AddToWithImplicit(T:! Type) { ... }

// Implicitly "for all U"

impl [U:! Type, T:! AddToWithImplicit(U), V:! ImplicitAs(U)] T as AddTo(V) {

...

}

class MyInt {

impl as AddToWithImplicit(i32) { ... }

}

● "for all" interpretation of blanket impl, however, that example doesn't need to determine
any types from anything other than the Self type or interface

○ Don't like how possibility 2 may need to consider an infinite set of possible values
for U due to blanket impls

● Possibly do a search for implicit conversions specially for operators
○ One concern is interaction with blanket impls

● Invented the manual conversion approach in C++
● Maybe simplify by not allowing implicit conversions for both arguments

○ would not scale since would have to search all impls
● Hack from dynamic languages: have add_to and reverse_add_to
● In C++, only allows implicit conversions for non-templated overloads, uses ADL to limit

where to look
● Put all the implicit conversion logic in the standard library

○ Do we want to allow types to be able to opt-out of automatic implicit conversion?
○ There is C++ code that turns off implicit conversions

■ but C++ has a lot more implicit conversions
■ Blocking an implicit conversion in one API, such as implicit conversion

from string literal to a string being blocked for SQL queries
● have a more specialized version that is faster since it does less

checking
■ Writing pointers to a text buffer, special case for char*
■ Thing your doing is semantically meaningful, but is a code smell, is lint

○ Could this be a lint feature: don't ever block implicit conversions. Instead just
declare that if the source type was X, print an error.

■ Concern that it would not be detected in the generic case

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/blob/954ff1bac48122b452d2cdf71259a3b5109dce72/docs/design/generics/details.md#subtlety-around-interfaces-with-parameters

Page 8 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Maybe magic template powers? Just like getting the file & line number of
the caller in asserts?

● Question: search for impl reachable via implicit conversion either done in the language or
in the standard library

○ Chandler&MConst would like there to be a way to get the same behavior for
non-operators for user's types; a reason to use a library solution

○ either way: users who want to override an operator just implement an interface
once with a non-wildcard implementation, no discrepancy allowed between type
and interface

● MConst: evolution risk for allowing type's definition doesn't match interface
● zygoloid: if we do the implicit conversions in the library, how do you present that to

users? given this impl with a hole in it, how do you find the right impl? our current syntax
doesn't make it clear where that would fit

interface AddToWithImplicit(T: Type) {

fn Add[me: Self](x: T) -> Self;

impl [U:! ImplicitAs(T)] as AddTo(U) {

fn Add[me: Self](x: U) -> Self { return me.(AddToWithImplicit(T).Add)(x); }

}

impl [U:! ImplicitAs(Self)] U as AddTo(T) {

fn Add[me: U](x: T) -> Self { ... }

}

}

● zygoloid: Is this going to interfere with defining a wildcard impl for 'AddToWithImplicit'
● zygoloid: Need to be clear on the exact algorithm we use for finding the AddTo impls
● mconst: maybe this will end up needing to be imperative rules for how to delegate / find

the relevant impls
● Remove mismatching signatures and internal wildcard impls from the proposal, will need

to tackle this problem in a future proposals
● Like removing mismatching signatures

○ Concern about calling the same function with the same types but from a
template vs. a generic getting different results

○ Other surprising edge cases

class MyInt {

impl as AddToWithImplicit(i32) { … }

}

● Approach 1:
○ Look for impl MyInt as AddTo(i8)
○ Look for impl MyInt as AddToWithImplicit(?)
○ could find i32, but may have some ambiguity if there are other choices
○ concern with doing a lookup for AddToWithImplicit(?) for coherence reasons

● Approach 2:

class MyInt {

// make this more of a template-y mixin -- immediately expanded, no wild cards,

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 9 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

not looked up

impl as AddToWithImplicit(i32) { … }

// as if

impl [U:! ImplicitAs(i32)] as AddTo(U) {

fn Add[me: Self](x: U) -> Self { return me.(AddToWithImplicit(T).Add)(x); }

}

impl [U:! ImplicitAs(Self)] U as AddTo(i32) {

fn Add[me: U](x: T) -> Self { ... }

}

}

○ Does this support wildcard impl of AddToWithImplicit?
○ No: this isn't really implementation of an interface, it is more like a templatey

mixin
○ Just a short-cut for writing a bunch of parameterized impls that is tedious &

error-prone

2021-12-06
● Attendees: josh11b, jonmeow, chandlerc, wolffg
● Go-public discussions
● DynPtr(MyInterface) questions

○ Question: Is there some way to write down an interface such that it will generate
an error if it isn't object-safe? Is this required for DynPtr? Advantage is that
object-safe becomes part of the contract, so you don't accidentally add a method
to the interface and breaks users. Don't want users to add a non-object-safe
method with a default impl just to prevent users from depending on it being
object-safe.

● Do we want a principle around metaprogramming where it is maximally powerful but
minimally used?

○ Goal is to get good errors, rather than keep the language small by implementing a
lot of features using metaprogramming than in the language itself.

○ Minimally used is the more important component: We would be willing to
sacrifice metaprogramming power to improve diagnostics, fast compile, etc.

2021-11-30
● Attendees: geoffromer, josh11b
● [geoffromer]: Thoughts on the type of a class name, when used as an expression?

○ Tentative agreement that typeof(ClassName) is a plausible spelling for that
type

● [josh11b]: issue #578 is a possible application, but alternatives exist

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/issues/578

Page 10 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

2021-11-29
● Attendees: chandlerc, josh11b, zygoloid, wolffg, mconst, jonmeow
● Outstanding PRs

○ #624 coherence
○ #931: impl access

● Issue #710 on default comparison for struct types / data classes
● final let, impl inheritance, and named impls

○ More comments
● migrating templates from C++ without bringing all of C++'s semantics & syntax

○ can make some things the same, such as static vs. non-static member access
○ idea: create an interface with a C++ templated impl with all the dependent

operations used by a templated function
○ big concern: references
○ another concern: lifetime rules for temporaries subexpressions

■ rewrite to something more different can address this by rewriting to a
function taking a callback

○ would we consider only doing interop but not automatic migration for templated
code?

■ can do better by looking at all instantiations in the code base and see if
the template is ever interpreted in different ways. probably would handle
enough cases?

■ probably could handle temporary lifetime concerns as long as the rules
between C++ and Carbon are similar enough and we can translate each
individual statement into an individual statement

■ references: C++ often allows punning between pass-by-value and
references, but not in templates and in Carbon we have to make a choice

■ concern: operators not found by ADL
● final let again

○ discussing the tight coupling between the impls where there are final let like
things

○ edge cases two impls with different final associated types and some intersection
○ Carbon: specialization example
○ impl inheritance adds complexity, but might be a nice feature on its own
○ Undecided between final let vs. final impl
○ Need more examples
○ Not even sure if final should be default or not
○ [chandlerc] Worried about complexity; would like to favor simpler rules

■ A reason to start with final impl and see how it goes, instead of trying
to figure out the edge cases with final let

■ Another option: Maybe don't restate final let in a specializing impl,
even that forbids partial overlap cases

● Again: migrating templates from C++ without bringing all of C++'s semantics & syntax
○ Expect common case is that we don't want to export a templated API

■ can see users, can manually instantiate

https://docs.google.com/document/d/1w-kRC338Jc1ibTu7Vf0pOlGKdrpumfz63bzUIxEj9jY/edit
https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/pull/624
https://github.com/carbon-language/carbon-lang/pull/931
https://github.com/carbon-language/carbon-lang/issues/710

Page 11 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Another case: template is part of API, and not going to migrate all users to
Carbon

■ look at a bunch, maybe not all, of instantiations
■ if consistent, can use that consistency for Carbon translation
■ if funny business, keep as a C++ template, migrate implementation details

C++ -> Carbon; conservative
○ Won't know how common funny business is until we try making a tool
○ Difficulty levels:

■ 1. Computer can automatically translate since there is a consistent
interpretation

■ 2. Human can see intended translation
● May need to do idiom recognition

■ 3. Template happens to support different things, but in practice only used
in one consistent way

■ 4. Actually does fundamentally incompatible different things
● [chandlerc] Expected to be rare, could potentially leave that in C++

forever
● Need to factor into Carbon design, reduce likelihood that

translation will introduce different semantics
○ Could possibly include a compile-time check that the machine translation is

using the same interpretation as the original C++
○ Found a company that does tooling for language migrations, have done some

few million line codebase migrations
■ E.g. weird custom language -> Java
■ Long tail problems would be solved by matchers for idioms common in a

particular codebase
■ Was not a material scaling limitation for them

○ Concern: C++ punning between pass by copy vs. pass by reference because they
have the same syntax at the caller

■ Hope that the difference generally won't matter
■ C++ behavior commonly is broken
■ Falls down in the case where some instantiations where there is a copy,

some where there is no copy, and the code observes the difference; e.g.
sees a mutation when there is no copy

■ Concern: not migrating all at once - can we generate Carbon code that
calls a function that takes a const reference in some cases and passes by
value in others

● Can possibly make these the same in Carbon
● Less common but harder problem is const-qualified methods

■ Want Carbon frozen values ("immutable borrows" or "pass by immutable
value") will be allowed to passed to const reference parameters
seamlessly

■ Edge case: non-copyable values that get mutated, e.g. a large object
where the identity matters, passed by const reference and want to
observe mutation

● Common case the type is large, could use pointers

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 12 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Plan is to translate both const reference and pass-by-copy to Carbon
frozen values

● Could also use var parameter to force a copy
■ Could also do static analysis

● How is this template used? Is it sometimes used with copies?
■ Mutable references and pointers both migrate to pointers
■ Try to minimize the amount of level 4 problems
■ Know if we are passing to a Carbon or C++ function, may more eagerly

copy when calling C++
■ Frozen passing is mostly to keep values in registers to make a fast calling

convention, not about Fortran-style optimizations. Still might be able to do
those optimizations, but would be willing to give them up if it hurts
interop.

■ Takeaway: For interop purposes generally, at call sites and expressions,
want the same sort of punning in Carbon as in C++ to make templates
more compatible

● Not going to do this for class members -- all reference members
will become pointers in Carbon

■ How do we support perfect forwarding of a forwarding reference?
● Look at examples more carefully, but maybe works out
● Or more invasively changing to lambdas

■ Allow moving from a value consistently with ~, even if it doesn't call the
destructor when it is a frozen value

● Still need to be able to reason about when destructors are run for
types where we care; not with types where you don't care about
copy vs. move

● Back to Issue #710:
○ Decided that the order of fields in a struct matters

■ but common operations can efficiently deal with the different orders
○ We support converting assignment

■ between types with a set of fields with the same names and convertible
types

○ We support heterogenous comparison
■ fields with the same name and comparable types are comparable, both

for equality and less than
■ different orders are allowed for equality comparisons, not less than

comparisons
■ always does the comparison in the field order of the left operand
■ if you really care how comparisons are done, use a nominal class

○ Explicit cast for passing different field order to a function
■ no implicit conversion

○ Do data classes get these comparisons?
■ Maybe a data class is an adapter of a struct? Allows you to control

whether you extend and keep the implementations from the struct
● But syntactically annoying since it would split up the

implementation

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/issues/710

Page 13 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● Would allow you to as into the underlying type
■ Generally think that data classes will want all the convenience features of

structs:
● just want a name and some extra methods

■ can later have different variants of data classes by implementing a
different interface than DataClass

○ Do we want to allow implicit conversions between structs with the same field
order and implicit conversions between the types?

■ Argument for: making having two integers returned from a function and
passed to another work like a single integer

■ Hesitation from MConst and zygoloid
■ To be viable, don't want as many implicit conversions as C++
■ Non-simple aggregates should be given a name
■ Same argument for other aggregates like arrays.

● Concern: Array(i8, 1000) -> Array(i32, 1000)
● Maybe a typo leading to a big copy which wouldn't occur if both

Array(i32, 1000)?
■ [chandlerc] Would prefer to distinguish between aggregates vs. not

instead distinguishing between things with named fields or other criteria
■ Probably won't pass returned pair to a function without destructuring first
■ Conclusion: Destructuring is what allows you to do the conversion, there

is no implicit conversion of aggregates

2021-11-15
● Attendees: jonmeow, josh11b, zygoloid
● [zygoloid] Three things want for non-type parameters of a type

○ Want code monomorphized on the value, such as array bounds, may need
different code generated for different values

■ [josh11b] Previously said would use template parameters, not generics for
this, so some array bounds could be rejected

○ Types that are distinguished by a phantom parameter that isn't going to be used
for anything other than causing the types to be different, so we can't e.g. mix up a
trusted string with an untrusted string

■ [josh11b] Possibly could answer type equality of these types using
observe statements, just like other type equality questions

○ To parameterize a type on a runtime value, for example to implement the
flyweight pattern. (Possibly the second thing is a special case of this.)

● [zygoloid] Differences between templates and generics
○ Value known when type checking vs. unknown
○ Impl selection vs. validation that some impl applies

■ In a template, can use the values of associated types and other entities
from the actual impl selected

○ Whether you use the interface of the type vs. the constraints
○ [josh11b] Can use if in a function signature, but only using template values and

build constants

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 14 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ [josh11b] Template instantiation can fail on use after the definition is first
compiled/checked

● [zygoloid] Maybe we only care about templates in the first case, and runtime parameters
in the second and third cases? So no need for non-type generics?

● [josh11b] What about a graphics library with a point/vector interface that supports 2, 3,
and 4 dims? Should we support an associated constant with N?

○ Concern is that associated constants will not have their value known at type
checking time, will need to be treated generically

● Rust calls these "const generics", long-awaited feature:
https://without.boats/blog/shipping-const-generics/

○ Has "No complex expressions based on generic types or consts" rule similar to
what we were discussing for Carbon

○ Getting the size of a generic but sized type is an interesting use case
○ "use cases like cryptographic hash traits which allow each implementation to

specify a different length for the hash they output"
○ To get type equality, would need to reason about how expressions are derived

from generic parameters
● Compile-time BigInts aren't expensive and are total for + and *, but not /
● Risk of failure from an array bound being to big is in some sense equal to the

monomorphization failure from making a type too big by having large members
● Does i32 addition overflow also fit in the category of things that could be allowed but

trigger monomorphization errors?
● Philosophically how much do we want to mark things that could fail at

monomorphization time with the keyword template
○ Don't want "type-too-big-for-implementation" to be marked
○ Do want to include things that can't be definition checked, like division by 0 or a

halting problem, as generics
○ Shouldn't promise to definition check expression equivalence, even though it is

possible to do, because of the high-polynomial time; instead mark with template
and accept a late error rather then do an expensive proof that it is always safe

● Allow equality of integer values only if you specify a constraint, like TypeId constraint for
types allowing ==

○ Would potentially allow us to avoid monomorphization
○ Maybe only allow == in constraints

● [zygoloid] Generically could have single-step identities between integer expressions, and
then use observe statements to combine them:

○ observe Array((N + M) + 1, T) ==
○ Array(N + (M + 1), T) ==
○ Array(N + (1 + M), T) ==
○ Array((N + 1) + M, T)
○ Can maybe get pretty far with just a few identities

● [chandlerc] Treat generic integers just like types, can address the second use case, but
not the first

○ start there, and then see how painful arrays are
○ assume we can't solve all primitive array problems, like testing for negative

bounds

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://without.boats/blog/shipping-const-generics/

Page 15 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ important that non-type parameters aren't a wart, completely unuseful
● What is going to be blocking?

○ templates are going to be needed for standard library
○ operators:

■ symmetry
■ a way to get an answer for the easy cases in generics, where we can't get

an answer for the hard case
● Is it acceptable to have something at the interface level or built-in to the compiler for the

equal type case needed for CommonType?
○ Needs to be away to express a special case for equal types beyond just the

CommonType case, but it maybe doesn't need to handle other conditions
○ We will encounter this again, don't want to hard-code this in the compiler

● Another example:
○ Does Deref on T* always give T, or can it be specialized?
○ Motivates "this impl can't be specialized further and you can rely on it when type

checking"
○ Same mechanism should handle deref T* and CommonType of T and T

● Concern is if we privilege impls in the interface definition, doesn't solve the problem for
shared pointer types

● More important to use the associated type of the blanket implementation than other
aspects of the implementation. We could safely specialize the implementation of
methods, etc.

● [zygoloid] Perhaps for type structure purposes could consider an impl defined inside the
class as an exact match for Self even if it is parameterized, so can't specialize outside
class further.

○ Could opt out by using external out-of-line
○ Possible solution for pointers and shared pointers, but not common type

● Perhaps some rules that impls are not specializable if they are inside the definition of the
Self type or interface

○ Can always see the ones in the interface, and blanket impls that don't see the
type are never prioritized above ones that mention the type

○ Interface1 has a preferred blanket impl for anything T implementing Interface2;
type U(V) has a preferred implementation for Interface1; concern is then there is
a definition for Interface2 for U(String)

■ Rule: don't allow preferred impls to have overlap in type structure.

2021-11-11
● Attendees: jonmeow, josh11b, zygoloid, cjdb, mconst
● [cjdb] Semantic requirements for C++

○ Spectrum: from structural, to nominal, to tested, to formally verified
○ Could take the Python approach where the compiler ignores annotations but

other tools use them, moves expensive static analysis off the critical build path
○ Standard C++ concepts do have semantics specific by the C++ spec, but no way

to define semantics for user-defined concepts

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 16 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ [josh11b] Carbon will probably follow formal verification, not lead
○ [zygoloid] Need for migration from C++ means needing to support incremental

migration
○ [josh11b] Improvements to safety and formal verification in Carbon will likely be a

large number of incremental steps
● Continuing Monday's discussion

○ [mconst] been thinking about some examples

class Set(T:! Hashable) {

impl Container {

let Element:! Type = T;

let Iterator:! Iterable where .Element == T = SetIterator(T);

fn Begin[me: Self]() -> Iterator { ... }

...

}

let Iterator:! Iterable where .Element == T = ...;

fn GetRandomElement[me: Self]() -> T { ... }

}

class Potato {

fn Hash...;

}

external impl Potato as Hashable {

fn Hash...;

}

var h: Set(Potato) = ...;

h.GetRandomElement().Hash();

○ What type does h.GetRandomElement() have?
■ First said Potato as Hashable but have changed it to be Potato
■ Want Set(Potato).Iterator and Set(Potato).Begin() to give you a

SetIterator(Potato) not a SetIterator(Potato as Hashable)
○ [zygoloid] One position is that facet types are just a convenience to avoid having

to repeat qualification for accessing names from an interface, and it is fine if the
particular facet is lost if you go through a function call in a generic context

■ In a non-generic context, have constant types
○ [josh11b] Most important is that user of Set(Potato) always gets types as if T

== Potato instead of an erased type
○ [mconst] Eventually: what happens if T is declared as a template instead of a

generic in the same Set class.
■ Maybe have Hash conflicts
■ Do the return types involve Potato, Potato as Hashable, or Potato &

Hashable
■ Question in terms of name lookup: Under which circumstances, if any, do

we look up names in the type-of-type in addition to the type? If we are
doing double name lookup, is it symmetric difference (union-conflicts) or
name lookup in the type followed by conflict checking (type-conflicts)?

■ [mconst] less interested in type-conflicts than was on Monday

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 17 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Downside of union-conflicts is if the modified type escapes, it is more
visible. But we'll just fix the escapes instead.

○ In the generic case:
■ One easy answer: we don't do any double name lookup, T in the body of

the generic is an archetype, and archetypes always internally implement
all of their interfaces. Outside the generic, use the type unchanged, no
coercion to a facet type.

■ [zygoloid] Equivalent to saying: inside the generic we do type-of-type
name lookup

■ Eliminating coercion to a facet type when passing to a generic function
■ [chandlerc] When calling a template from a generic, may want to reject

code that doesn't cast to an adapter
○ We had liked M intersect Z, but it has a problem in the template case

■ Plain option M would do double name lookup on template types, in order
to help evolution from template -> generic

■ Z always does double name lookup
■ M intersect Z does too, concern that leaks out to caller via return type
■ [zygoloid] One possible rule: only do double name lookup (union-conflicts)

when dependent on a template parameter
● [mconst] agree that this is a solution; more convenient, harder to

describe, mostly only helps in the case where
■ [mconst] Another possible rule: never do double name lookup

● in generics lookup would be in either the archetype or the
type-of-type

● in templates, would behave just like substitution. Manually
monomorphization would preserve semantics.

● in practice this means you would have to qualify accesses to
interface members

● what about the bridge-to-generics story?
○ start with a template have to use qualified names
○ constrained templates still would have to use qualified

names
○ generics would not have to qualify

● concern: a template might not use qualified names
○ if a template wants to call a method from an interface,

have to qualify to be reliable, in all of the models under
consideration

■ [zygoloid] Simplest option: always qualify if you don't have a constant
type, always qualify to access an external impl even if the type is constant

● makes generic code more verbose
● but makes the rules uniform across regular code, templates, and

generics
● simple model for templates: means constant propagation, no

more no less
[break]

● [chandlerc] Want generic facilities to also be available in non-generic code.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 18 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● [mconst] Can we write these in non-generic code:

let Foo:! Hashable = Potato;

let template Bar:! Hashable = Potato;

● [chandlerc] Should imagine how we get generic behavior when in a non-generic and
examine how that works.

● Suppose we're in a function with a deduced return type, and we return an expression of
type Foo, what is its return type?

● [zygoloid] The "Simplest option" above has the property that generics don't have
additional facilities, but at a severe ergonomic cost.

● [chandlerc] Preference: get all the things that we are comfortable having outside
generics, make available in generics. Also in templates: people want to write code that's
a template but is definition-checked. Eg, code that is mostly generic but needs to be a
template because (eg) it calls a template. Still want to type-check everything else.

● What if the API change (from eg T:! Hashable) is very localized – your use of that T is
Hashable, but other people who just use that value, stored elsewhere, don't get the
Hashable effect.

● [mconst] Intuitively, only want double name lookup in scope of T. Don't yet have a precise
formulation of this.

● [chandlerc] Even in a template, if I say T is Hashable, I want name lookup to go to
Hashable (and not T).

● [mconst] Problem: can no longer add constraints gradually. Sharp transition from
unconstrained -> constrained that immediately changes lookup, so must specify all
constraints.

● [chandlerc] Can separate constraints from changes in interface to allow constraints to
be added gradually. Eg, different spelling.

● Constraint does not imply you want a different interface, but there may be common
patterns and correlation.

○ Syntactically separate constraints from change of interface / change of
archetype. Former is for constraining generics / templates, latter is for
ergonomics. Change of archetype would imply a constraint but not vice versa.

○ Perhaps where does not change archetype.
○ Perhaps scope-based rule. Eg, in associated type, constraint affects the interface

only within that interface or impl, not in users outside the scope of the associated
type.

○ Type introduced by some type name with constraints, which specify the API. All
names which map back to that type introduction get that API.

let PV:! Vegetable = Potato;

var s: Set(PV) = …;

s.GetRandomElement().Hash();

○ Expectation: GetRandomElement() returns PV here.
■ Maybe: perform a symbolic evaluation that stops at :! bindings that are

still in scope.
○ Set(PV) and Set(Potato) are in some sense not the same: their

GetRandomElements have different return types

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 19 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Perhaps they are the same but have different mappings from (eg) T back
to local types.

○ Perhaps: PV introduces a new opaque type (an archetype) where all we know is
that it implements Vegetable, so Set(PV) and Set(Potato) are different types.
But we know we can cast between Potato and PV, and between Set(PV) and
Set(Potato).

○ PV has the archetype property and the constant property
○ If this were an actual generic:

fn F[PV:! Vegetable](...) {

var s: Set(PV) = …;

s.GetRandomElement().Hash();

}

then Set(PV) cannot be compatible with Set(Potato) since there is no
connection between PV and Potato, you could instantiate the generic with a
different Vegetable.

○ But if the two types are known to be related the conversion could be OK:

fn F[PV:! Vegetable](...) {

let PT:! Type = PV;

// Set(PV) and Set(PT) are compatible

}

○ [chandlerc] Would be fine with requiring an additional where .Self == PV in the
type of PT if you want to perform this conversion

● What do other languages do in this space?
○ In Rust, lookup looks in all traits in scope that are implemented, regardless of

whether we're in a generic.
■ No way to restrict the lookup to only certain traits other than qualification

or writing a generic that's only used with one type argument.
■ Swift is similar, in both cases you are always looking everywhere you

could think to look. No difference between external and internal impls, all
impls are internal even if declared out-of-line.

○ In Haskell, no member names. First look up independent of types, and then check
that the constraints are satisfied.

○ In C#, interfaces are derived from and never implemented externally or by
anyone other than the class author. Generics can constrain which interfaces are
implemented or more generally which base classes are derived from.

○ Why are we different?
■ Because of separating internal and external impls and trying to give

definitive control to the type author of the API exposed by the type.
● What do people like?

○ [chandlerc] Like having let type declarations create archetypes, but they don't
change type identity at all

■ 3 places: function body, associated type in an impl, member type in a
(generic parameterized) class, have an =

● maybe have an implicit constraint that you can convert between
the two sides of the =

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 20 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ associated types in interface declarations are like generic function
parameters, don't have an =

■ How do we get the return type as the caller expects, when the return type
involves an associated type, type parameter, etc.

○ [zygoloid] symbolically evaluate the type (of an expression etc.), resulting in an
expression in terms of type parameters (names of archetypes). The declared
types of those type parameters determine their interfaces. If the result doesn't
involve type parameters (eg, we evaluate all the way to Potato) then we get the
interface of that non-generic type instead of an archetype.

■ works except in the let in the function body case, type check as if it were a
generic

■ [mconst] another way we could phrase that, not in terms of symbolic
evaluation: when type checking the body of a generic, the parameters get
instantiated as archetypes, which we think of as a normal concrete type,
and then do normal type checking

■ Issue is you want to look though them in an impl but not in a function
body

● you are in the scope of it in the function body
■ [chandlerc] Like the archetype model, but would say that the archetype is

always scoped. When you leave the scope you always revert back to the
type identity and nothing more

○ [chandlerc] This example tries to construct a case where it tries to return the
archetype formed in the body of the function, but the caller still gets the caller's
type

fn F[T:! Hashable](x: T) -> auto {

let U:! Hashable = T;

return x as U;

}

fn G[T:! Hashable](x: T) -> T {

return x;

}

var p1: Potato;

// Should look in Potato for Hash.

G(p1).Hash():

// This should be rejected ... somehow ...

F(p1).Hash();

■ Maybe have to reject F, on the basis that it is returning a type that won't be
in scope in the caller

■ Maybe also reject F because it does return type deduction
○ [mconst] Consider returning an associated type

interface Hashable {

 let HashCodeType:! Integral;

 fn Hash[me: Self]() -> HashCodeType

}

fn F[T:! Hashable](x: T) -> T.HashCodeType {

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 21 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

 return x.Hash();

}

class PotatoHashCode {

 fn Mash[me: Self]();

}

impl Potato as Hashable {

 let HashCodeType:! Integral = PotatoHashCode;

 fn Hash...;

}

var p2: Potato;

// Return type of F(p1) is PotatoHashCode

F(p2).Mash();

let PH:! Hashable = Potato;

var p3: PH = p2; // names on `p3` are the names of `Hashable`

// error:

F(p3).Mash();

// Assuming `Integral` has an `Add` function, what happens here?

// PH involves an archetype that is in scope, so this succeeds at

// looking up `Add` in `Integral`. [chandlerc] likes this

F(p3).Add(42);

// TO MOVE BELOW

let template PT:! Hashable = Potato;

var p4: PT = p2; // What are the names of `p4`?

// Potato, Union of Potato & Hashable - Conflicts, or Hashable, Hashable over

Potato

// [mconst&zygoloid pref] Potato [chandlerc pref] Hashable

// Concern with the sym-diff is complication

// Hashable over Potato is more palatable to zygoloid while trying to accommodate

// Chandler's desire

// Benefit of sym-diff allows transition from template -> generic without ever

silently changing behavior, not true of Hashable over Potato since when you add the

constraint can silently switch what is called

// mconst: provides the most convenient interface, but hard to explain when this

feature activates; particularly when we look at the type-of-type of an associated

type

// zygoloid: I think it'll be surprising w symmetric difference that h.Hash is

ambiguous, despite the Hashable constraint. I think the dev will think they already

qualified it by writing `: Hashable`

p4.PotatoMethod(); // [Potato] yes [Hashable] no [sym-diff] yes

p4.Conflict(); // [Potato] yes (Potato) [Hashable] yes (Hashable)

[sym-diff] no

p4.HashableMethod(); // [Potato] no [Hashable] yes [sym-diff] yes

// Allowed? [zygoloid pref] yes [chandlerc pref] no [sym-diff] yes

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 22 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

F(p4).Mash();

// Allowed? [zygoloid pref] no [chandlerc pref] yes [sym-diff] yes

F(p4).Add(42);

// Allowed? [zygoloid pref] yes (in Potato) [chandlerc pref] yes (in Hashable)

[sym-diff] no?

F(p4).Overlap();

fn MyT[template T:! ???](x: T);

// ??? [zygoloid pref] yes [chandlerc pref] yes [sym-diff] yes?

MyT(F(p4));

■ [chandlerc] Scope interpretation is that we lose the fact that
HashCodeType is an archetype outside the Hashable interface and F
generic function

■ [zygoloid] In the model we're thinking of the model, there is no such thing
as HashCode as Integral; if it isn't in terms of a placeholder == the
name of the archetype, or we are not in the scope of the archetype, there
is only one type.

■ [mconst] This model is equivalent to the earlier model where we never do
double name lookup; name lookup is only done on the actual type. When
type checking generic code, we introduce archetypes, which are concrete
types that internally implement all their interfaces.

■ [zygoloid] There is *a* way to manually monomorphize a generic, even if it
isn't the most obvious thing you might think to write.

○ [mconst] We have rejected the simplest model because it is too verbose
○ [mconst] Now let's talk about templates: two models still being considered differ

only in treatment of templates
■ Question: do we want to require that people need to qualify calls in a

template? This is purely a question of name lookup
■ Examples showing the difference between the two template models:

Move template example here
■ [zygoloid] Point is that generics are evaluated symbolically, but templates

are substituted early, so they are gone before we consider symbolic
evaluation. This gives the Potato answer.

■ [mconst] easy to describe, works like C++ templates, different from
generics but in an expected way

■ [zygoloid] Type of template, constrained, only limits which types can be
assigned to the template parameter, really only used in function
declarations, mostly meaningless in a function body

■ Don't want a semantic cliff when adding the first constraint to a template
■ [chandlerc] How much of the benefit of generics do we want to provide

when using constrained templates? Want to provide as much as possible
for the case where the constrained template is expected to persist and is
not just a stepping stone to transitioning to generics. Example case is
bridge code to C++ templates.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 23 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Weird case is external interfaces, and external interfaces are going to be
rare in the migration case

○ Agreed on a model as facet types, constraints need not be types-of-types, they
just induce constraints and define the archetype used

○

2021-11-08
● Attendees: josh11b, jonmeow, chandlerc, zygoloid, mconst
● Agreed: Treat constant and non-constant types differently
● Option Z: name lookup in both type and type-of-type

○ Concern: when x and y have type i32, x + y having a different API than x or y.
This would come from the type-of-type changing to AddableWith(i32).

● Option J: name lookup only in type (when type constant) or archetype (when type
non-constant)

○ No one advocating for this option at the moment, since we prefer to call
templates from generics with the original type rather than facet type

● Option M: J with no facets
● Can still use adapters instead of facets when you explicitly want to project onto the

interface of a type-of-type

adapter Facet(C:! Constraint, T:! C) for T {

extends C;

}

// Maybe, though could be fine with just explicit `as`:

external impl [C:! Constraint, T:! C] T as ImplicitAs(Facet(C, T)) { ... }

external impl [C:! Constraint, T:! C] Facet(C, T) as ImplicitAs(T) { ... }

● Explaining M: generic function

fn F[T:! Serializable](x: T) {

// Typechecked using T = Archetype(Serializable, "T")

x.Serialize();

// resolves to x.(Serializable.Serialize)();

}

F(2 as i32);

● T implements C implies T is a subtype of Archetype(C)
● Problem with "Agreed": there is no way to specialize on constant vs. non-constant

distinction
○ No way to define an impl for i32 as ___ that is specialized for i32 instead of

applying to all types
○ Hard to write a blanket impl that applies to all facets of a type

● Explaining M: associated type

impl i32 as AddableWith(i32) {

let AddResult:! Type = i32;

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 24 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

fn Add(...) -> AddResult;

}

var x: i32 = 1;

var y: i32 = 2;

x+y // result has type i32 (technically "as Type")

● Explaining M: associated type with constraint

interface HashValue {

fn Combine...;

}

external impl i32 as HashValue { ... }

interface Hashable {

let HashType:! HashValue;

fn Hash[me: Self]() -> HashType;

}

external impl i32 as Hashable {

let HashType:! HashValue = i32;

fn Hash...;

}

var p: i32 = 1;

var h: auto = p.(Hashable.Hash)();

h.Combine(); // Allowed in Z but not M

h + 1; // Allowed for both M, Z

● Use case: calling several functions from an external interface, works in Z

interface DrawingContext {

fn DrawRectangle...;

fn DrawCircle...;

fn SetPen...;

fn SetFill...;

...

}

external impl Window as DrawingContext { ... }

fn Render(w: Window as DrawingContext) {

w.SetPen(...);

w.SetFill(...);

w.DrawRectangle(...);

...

}

● Possibility with M: The types of all types could be Type.
● Could use subtyping to represent "satisfying a constraint"

[W:! Type ◁ DrawingContext](w: W)

(w: some DrawingContext) // static dispatch

(w: DrawingContext*) // dynamic dispatch

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 25 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Swift regrets not marking when forming an object trait, Rust is switching to using
dyn

● W:! DrawingContext could be sugar for W:! Type where W is DrawingContext, so
type is still Type, just have a restriction

● in Z:

// These replace the type-of-type from caller

fn F[template T:! Type](x: T)

// or:

fn G[template T:! Hashable](x: T)

// vs. keeping type-of-type from caller

fn H[template T:! auto](x: T)

● in M: If the type is known at type-checking, use the type's API, otherwise use the type
Archetype(Constraint)

fn F[T:! Hashable](x: T) {

// is resolved to `x.(Hashable.Hash)()`

x.Hash();

}

var i: i32 = 1;

// and i32 implements Hashable

// calls i.(Hashable.Hash)()

F(i);

● T is a subtype of Archetype(Constraint) if T is Constraint
● in Z: Window as DrawContext
● in M: Window as DrawContext is probably a mistake

impl i32 as AddableWith(i32) {

// Type is not load bearing here

let AddResult:! Type = i32;

}

fn F(x: SomeVariant) {

match (x) {

case Widget:

case Gadget:

}

}

● have types A, B, and C each of which implements interfaces I1 or I2 and J1 or J2. I2
extends I1, J2 extends J1. This example comes up in ASTs.

ABC = Variant(A, B, C)

fn F(x: ABC) {

match (x) {

case [T:! I2] x: T => { ... }

}

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 26 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

if x.Type() is I2 {

// Doesn't require stating the type, which might be dynamic

x as Archetype(I2)

x as Facet(I2, x.Type())

} else {

// x.Type() is I1

x as Archetype(I1)

}

}

● Another example where we want to create generics inside a function

fn StrCat[T:! GenArray(ToString)](args: T...) {

var result: String = "";

// type `U` is different every iteration

for [U:! ToString] x: U in args {

result += x.ConvertToString();

}

// Possible alternative approach:

args.Call(lambda [U:! ToString] x: U {

result += x.ConvertToString();

});

// C++ way

(result += args.ConvertToString, ...);

return result;

}

● Motivation for M:

interface AddableWith(RHS:! Type) {

let Result:! AddableWith(RHS);

// Vs.

let Result:! Type where .Self is AddableWith(RHS);

fn Add[me: Self](y: RHS) -> Result;

}

external impl i32 as AddableWith(i32) {

// In M, `Type` is superfluous

let Result:! AddableWith(i32) = i32;

}

var x: i32 = 3;

// In Z: type of `x + x` is `i32 as AddableWith(i32)`

(x + x).Add(x)

interface HashValue {

fn Combine[me: Self](w: Self) -> Self;

}

impl i32 as HashValue { ... }

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 27 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

interface Hashable {

let T:! HashValue;

fn Hash[me: Self]() -> T;

}

impl i32 as Hashable {

let T:! HashValue = i32;

...

}

var x: i32 = 1;

x.Hash().Combine(x);

● Concern about the difference between a generic vs. non-generic context; perhaps the
important distinction is internal vs. external; if we have two Add methods, one external
from AddWith, and one internal that means something different, don't want to suddenly
get a value from x + y where Add means something else than it does elsewhere in the
function

● Hashable is a motivating example, also containers
● Name lookup and compiler error messages are motivating
● In Z, could make the type of i32 be Type.
● Question: do we agree about the intersection of M and Z, the examples where they agree
● Question: what are the situations where doing double-name lookup in option M would be

different from plain option M?
● Pass a String to a generic function and get back String as Hashable, in variant M

would get an error if you use a name that is in conflict between String and Hashable
● Can already make return type be regular String from functions as long as the return

type was not from an associated type
● Option Z but the only places you can write a type-of-type are in the parameters of a

generic
● Still need type-of-type as a constraint on associated types in interfaces
● But can write them in a way such that associated types only implement interfaces

externally, which would make it more similar to M
● In the option M model, the caller's type is preserved when calling a generic, but it does

use a different type when type checking
● Chandler requests some examples to show the differences between the options,

including container examples
● intersection is:

○ "option Z with no facet types"; option Z but we never coerce anything to a facet
type

○ option M except that we perform double name lookup, not just in template
contexts, but in all contexts (generic contexts double lookup == single lookup)

● Double name lookup means: we lookup names in the type, that is the name we use,
however if the type-of-type also has the name and it conflicts, then we fail. This gives us
the migration property we need for migrating from templates to generics, but avoids
injecting names from external implementations.

● i32 as Hashable would not be legal because M and Z give different interpretations
● Could make double name lookup could also allow names only in the type-of-type to

resolve

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 28 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● Could also consider transitions from generics to templates
● Z: Like having a unified name lookup. Z always looks in the value, type, type of type, etc.

and requires only one result
● M: Finds type minus conflicts from type-of-type rule equally simple
● Largely converged! Main question is what double-name-lookup rule we want.
● Intersection is restrictive, but seems to cover the range of expressiveness that we want,

but we should check.
● Should do an example of a function whose return type is an associated type.
● When you are writing an associated type, it always has type-of-type Type, but it could

have constraints that it implements some interfaces.
● The only places where you get a type-of-type other than Type are templates and

generics.
● [chandlerc] Want to be able to write code that behaves like a generic inside of a

non-generic, for example in a match statement.
● Missing from option M, so not in the intersection.
● Principle: generic should not add expressivity beyond their genericness

2021-11-02
● Attendees: josh11b, zygoloid
● Have two rules for prioritization, have shown they are different, both seem viable, neither

so far has a reason to prefer it
● Expect that we will have some rule for avoiding cyclic impl dependencies, result will be

informal rules that users follow to avoid introducing cycles, those informal rules will be
necessarily be pretty conservative to deal with the uncertainty about what is happening
in other libraries; but don't know what those informal rules will look like yet

● Should avoid cycles with CommonType by introducing the symmetric interface that is
implemented only by blanket rules

● Could we forbid users from implementing AutoCommonTypeWith, by saying the name is
not exposed/public (private in the API file) and so types can't mention the name, but still
see which types satisfy it for purposes of the CommonType constraint

○ AutoCommonTypeWith is an implementation detail of the CommonType
constraint, how CommonType determines if its constraint is met

● Error messages?
○ Motivation for static_assert is being able to recognize situations and generate

specific error messages that can be clearer
○ Downside is that it introduces the possibility of failure during impl selection
○ Maybe we can give another way of specifying the error message when a

constraint is not satisfied; "Constraint, say why you weren't satisfied"
○ Something we can do with constraints and not interfaces, due to the open

extensibility of interfaces
● Can we do better than just a block of text to report when a constraint is not satisfied?

○ Would like to have different errors depending on what went wrong, but how to
write that?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 29 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● impls_in_priority_order can give you a "not"; actually since one impl is a subset of
the other, specialization gives it to you

class TrueType {}

class FalseType {}

interface NotFooImpl {

let T:! Type;

}

impl [T:! Foo] T as NotFooImpl {

let T:! Type = FalseType;

}

impl [T:! Type] T as NotFooImpl {

let T:! Type = TrueType;

}

constraint NotFoo {

extend NotFooImpl where .T == TrueType;

}

● This definition does not give you a law of excluded middle

interface X {}

impl [T:! Foo] T as X {}

impl [T:! NotFoo] T as X {}

fn F[T:! Type]() {

// will not type check because we have no "law of excluded middle"

… T as X …
}

● Reason is because in theory someone could further customize NotFooImpl
● Can also implement "and" and "or", so can develop arbitrary boolean expressions on

which interfaces are implemented for a type
● How ergonomic is this functionality available to constraints?

constraint CommonType(U:! Type) =

if Self as CommonTypeWith(U) and not U as CommonTypeWith(Self)

then …
else if Self as CommonTypeWith(U) and U as CommonTypeWith(Self)

then if (Self as CommonTypeWith(U).Result != U as CommonTypeWith(Self).Result)

then error "CommonTypeWith defined in both directions between {U} and {Self}"

else …

● Need to have consistent members any time we don't have an error, for CommonType, want
a Result

● May also want to know that certain types implement certain interfaces
● Three things:

○ Criteria whether a type implements constraint
○ Error message if type doesn't implement constraint, preferably saying what went

wrong
○ What a function can assume about types that satisfy the constraint

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 30 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● Nice to have: ability for a type to implement a constraint directly in cases where that
makes sense (currently this is determined by whether there are aliases for all names that
must be implemented)

● Can we compose constraints to avoid combinatorial explosion when trying to state
constraints?

constraint CommonTypeHelper(U:! Type) {

let Result:! auto =

if U is ManualCommonTypeWith(Self)

then U.(ManualCommonTypeWith(Self).Result)

else if Self is ManualCommonTypeWith(U)

then Self.(ManualCommonTypeWith(U).Result)

else if U is ImplicitAs(Self)

then Self

else if Self is ImplicitAs(U)

then U

else error("...");

}

constraint CommonType(U:! Type) {

let Result:! auto =

if U is not CommonTypeHelper(Self)

then error("...")

else if Self is not CommonTypeHelper(U)

then error("...")

else if (...Result == ...Result)

then ...Result

else error("...");

}

● Unfortunately, the composition here loses the context that would let us deliver a clear
error message. How bad is it if we do this directly without a helper?

constraint CommonType(U:! Type) {

// alias Result = ... ?

let Result:! Type =

if T == U

then T

else if U is CommonTypeWith(Self)

then

if Self is CommonTypeWith(U)

then

// U.Result would be longer unless we do an `if let` above

if U.Result == Self.Result

then U.Result

else error("inconsistent CommonTypeWith")

else U.Result

else if Self is CommonTypeWith(U)

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 31 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

then Self.Result

else if Self is ImplicitAs(U)

then

if U is ImplicitAs(Self)

then error("ImplicitAs in both direction")

else U

else if U is ImplicitAs(Self)

then Self

else error("nothing is true");

}

2021-11-01
● Attendees: josh11b, zygoloid, jonmeow, chandlerc
● What constitutes a cycle that Carbon will reject?

○ impl [T:! Printable] Optional(T) as Printable -> not a cycle
○ impl [T:! Type, U:! ComparableTo(T)] U as

ComparableTo(Optional(T)) -> not a cycle
○ Definition of circular: During query "A as B?", circular if the answer depends on

whether A as B is implemented.
○ The other kind of failure is infinite search. Example: A is B if Optional(A) is

B if Optional(Optional(A)) is B if ...
■ Could be the result of a single impl impl [A:! Type where

Optional(.Self) is B] A as B { ... }, or a chain of impls
○ Concerning example:

interface Foo {

let X:! Foo;

}

impl [A:! Foo where .X is B] A as B { ... }

impl [T:! Type] T as Foo {

let X:! Foo = T*;

}

// or maybe:

class Bar(T:! Type) {

impl as Foo {

let X:! auto = Bar(Optional(T));

}

}

○ Circularity is a property of a query
○ A set of impls may or may not have cyclic queries.
○ If we can determine an impl even though there is a cycle, should we accept or

reject?
○ Similarly for infinite -- maybe there is another, more specific impl that determines

A as B
○ Should we reject cycles in the absence of a query?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 32 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Could eliminate infinite towers if we require every step to get no more
complicated.

○ Cycles could be spread out across libraries with no dependencies between them
■ Query: Vector(Pair(A, B)) as Map(C, D)?
■ impl [T:! E] Vector(Pair(A, T)) as Map(?, ?) in LibA, and so on

○ Options (from shifting the error left to right)
■ We SOMEHOW have a restriction that prevents cycles only checking each

impl definition
■ Combining impls could give you an immediate error
■ A cyclic query could give you a late error (and maybe an infinite search is

terminated by a recursion limit)
■ A cyclic query leads to an arbitrary but deterministic choice

○ All of these options are bad, in different ways. Generally speaking, concern is
problems created by a library that are only detected by its users.

○ Question (re: first option): Can we restrict blanket impls so they are acyclic by
virtue of using the partial ordering of dependencies?

■ Seems tricky, since we want to support writing impls that relate interfaces
from independent libraries for a local type

● Talked about explicit prioritization of impls by including them in an ordered block in a file
○ Resolves questions when type structure is the same
○ Can be generalized to apply to mixing type structures: implicitly defines

intersection impls. Example:
■ Library1: has (?, ?, A, ?) prioritized over (B, ?, ?, ?)
■ Library2: has (?, ?, ?, C) prioritized over (?, D, ?, ?)
■ What impl is selected for the query (B, D, A, C)?
■ Prioritization means:

● Library1 implicitly defines (B, ?, A, ?) delegating definition to A
● Library1 implicitly defines (?, D, ?, C) delegating definition to C

■ Winning type structure is (B, ?, A, ?), which delegates to definition A
■ Possible way to rephrase this rule:

● Pick the impl pattern most favored for the query, then pick the
definition of the highest priority matching impl in the block

● NOTE: LATER FOUND A COUNTER-EXAMPLE, discussed in Discord
● Counter-example:
● Library3 has (A, ?, ?, D), (?, B, ?, D)
● Library4 has (A, ?, C, ?)
● (A, ?, C, ?) from Library4 is most favored type structure of

those explicitly listed for query (A, B, C, D)
● However, Library3 implicitly defines intersection (A, B, ?, D)

which is favored more
○ We like prioritization for impls. Prioritization is only required among those with

the same type structure.
○ Can we use the same explicit prioritization rules for overloads?
○ This doesn't immediately generalize to function overloading because we want to

be able to favor exact matches over implicit conversions.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://discord.com/channels/655572317891461132/708431657849585705/905130098276040704

Page 33 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Possible resolution: each function overload implicitly generates 2^N impls with
different type structures, and then match using the most specific type structure

○ Match statements also have to consider implicit conversions like function
overloading, unlike impl selection

● Principle: Order can only matter for items that are collocated and contiguous ("together
in a group")

○ Not okay: order of things in file scope mattering for e.g. prioritization, particularly
if other declarations can be intermixed

○ More important, though, to allow users to put public members before private
members in a class

○ Would be okay to have a public API forwarding to data members that are together
in layout order. You might have the rule: you can't have both public & private
members, but if you have private members you can still have public properties
forwarding to them.

○
● Talked about https://csis.pace.edu/~bergin/slides/Maclennan.html , but didn't feel like

we agreed with the principles strongly enough to adopt them
○ Concern about inconsistency helping user sentiment in some cases
○ But Dart gets good sentiment from seeming familiar

■ println! looks like shouting in Rust, seems disconcerting
○ To be familiar to C/C++ programmers, use same pointer syntax
○ Need to be different enough that it won't be confusing whether it is C/C++ or

Carbon
○ Carbon has been heavily prioritizing "Manifest interface: All interfaces should be

apparent (manifest) in the syntax."

2021-10-29
● Attendees: josh11b, mconst
● See Carbon: blanket impl contradiction

2021-10-25
● Attendees: chandlerc, josh11b, zygoloid
● [zygoloid] Concern that implied constraints may be dependent on a template parameter.

fn F[template T:! Type, U:! Type](x: T, y: U) -> T.G(U) {

return x.H(y);

}

class RealT {

class G(U:! Hashable) { ... }

fn H[U:! Type, me: Self](y: U) -> G(U);

}

○ Claim: neither of the U:! Type declarations need to be replaced by U:!
Hashable, that is implied (as in "implied constraint").

https://docs.google.com/document/d/1GzoNMv7-eKrHX1Wa4lqAgrHtemufBFs7oXMHSe0kH20/edit?resourcekey=0-WX-d9bIZsPpIjn_YiXcntw#
https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://csis.pace.edu/~bergin/slides/Maclennan.html

Page 34 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ However, the following U:! Type is not okay, and does need to be replaced by
U:! Hashable

// Not Okay

fn Call[U:! Type](x: RealT, y: U) { F(x, y); }

○ When type-checking the template F (and its body), do not have any inferred
constraint on U. After instantiating F w/ T = RealT, the resulting generic does
have implied U:! Hashable.

● Coherent specialization rules
○ Assumption/requirement: no cyclic dependencies between libraries
○ Type structure of an impl

■ Given an impl declaration, find the type structure by deleting implicit
parameters and replacing type parameters by a ? (also replace T* by
Ptr(T))

■ The type structure of this declaration:

impl [T:! ..., U:! ...] Foo(T, i32) as Bar(String, U) { ... }

is:

impl Foo(?, i32) as Bar(String, ?)

○ Type structure → orphan rule
■ Orphan rule: given a specific type and specific interface, impl that can

match can only be in libraries that must have been imported to name that
type or interface

■ Only the implementing interface and types (self type and type
parameters) in the type structure are relevant here; an interface
mentioned in a constraint is not sufficient since it need not be imported

○ Type structure → resolves overlap
■ At most one library can define any impls with a given type structure
■ Consequence of both the orphan rule and no cyclic dependencies
■ Corollary: two impls defined in different libraries must have different type

structures
■ Given a specific concrete type, say Foo(bool, i32), and an interface,

say Bar(String, f32), want an overlap rule that selects the type
structure of the impl to select

■ 1) Write down the *unique* type structures of all *matching* impls, for
example:

impl Foo(?, i32) as Bar(String, ?)

impl Foo(?, ?) as Bar(String, f32)

■ 2) Our rule is to pick the type structure with a non-? at the first difference
● Here we see a difference between Foo(?, i32) and Foo(?, ?),

so we select the one with Foo(?, i32), ignoring the fact that it
has another ? later in its type structure

■ Corresponds to a depth-first traversal of the type tree to identify the first
difference. Could also do another order, such as breadth-first, but this
order is both simple and reflects some experience from the Rust
community that the Self type is particularly important to prioritize.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 35 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Same type structure --> 1) same library API file, 2) intersection requirement (or
"semi-lattice" requirement)

■ Once we've determined the type structure of the matching impl, we need
to pick between the matching impls with that type structure

■ These impls will necessarily be defined in the same library together
■ Compiler will check that for every pair of overlapping impls in a given

library, either:
● one matches a strict subset of the other
● there exists another impl exactly matching their intersection

■ Result is there is a unique most specific impl with a type structure, using
the partial ordering of impls by containment

■ An impl mentioning a private type may be private to the file defining the
private type, but otherwise impls must be declared publicly in an API file

○ Consequences
■ Can be assured an impl exists for all specific types that match a general

blanket impl, but it might be some specialization that is not visible to a
generic function. Big improvement in usability since it greatly reduces the
need to list "and parameterized type/interface is implemented"
requirements

● CAVEAT: Except template instantiation can fail. Does not change
the assumption that it won't when an impl is selected.

■ Specialization makes the dynamic strategy harder
○ Example: interface Addable(T:! Type)

impl [M:! BigInt, U:! ImplicitAs(Int(M))] Int(M) as Addable(U);

impl [N:! BigInt, T:! ImplicitAs(Int(N))] T as Addable(Int(N));

■ These rules on their own are fine, the first is used on their overlap. Can
also add:

impl [N:! BigInt] Int(N) as Addable(Int(N));

■ This last rule would be given priority over the other two rules
○ Rust considering a "Child trumps parent" rule "This rule is particularly simple and

is usually what you want when such overlap arises."
■ Problem: simple application of the rule is not transitive:

● (A, ?, ?) parent
● (?, B, ?)
● (?, ?, C) child
● A < B < C < A

■ Fix: "Child trumps parent on their intersection" rule
● 2: (A, ?, ?) parent
● 3: (?, B, ?)
● 4: (?, ?, C) child
● 1: (A, ?, C) delegates to 4

■ Without some child trumps parent rule: If I define a new type, then all impl
lookup for interfaces implemented by that type as Self will consider impl
from my library first, at the time I define it until some other library adds an
impl of that type as Self.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
http://aturon.github.io/tech/2017/02/06/specialization-and-coherence/

Page 36 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● However, adding the "child trumps parent on their intersection" rule
removes this property.

○ Does U:! FacetOf(T) imply U:! ImplicitAs(T) because there is a
requirement in FacetOf on ImplicitAs or because there is a blanket impl?
either is acceptable.

● Want to prevent FacetOf(T) from being implied by users. Should we allow users to
declare impls as "final"? No, that is a problem for our "resolving ambiguous overlap by
declaring an impl on the intersection" plan. Instead just say that FacetOf(T) is a
compiler-provided constraint, not something users can impl.

● Would like to allow forward declaration of impls inside classes.
○ Need a syntax for defining the impl for the class out of line
○ Inside the class, we need the assignments to associated types (plus anything

else that would affect type checking), but the methods are effectively already
forward declared in the interface.

● Do we want blanket impls to have (optional?) names?
○ Benefits:

■ would allow delegation between impls
■ would allow out-of-line definition
■ would allow you to call a method from a specific impl to implement an

impl in terms of another without just delegating
○ Can we frame blanket impls as providing a facet type that has the needed impl?
○ [zygoloid] One way to name impls:

facet RightAddableInt(M:! Bigint, U:! ImplicitAs(Int(M)))

= impl Int(M) as Addable(U) {

fn Add[me: Int(M)](v: Int(M));

}

fn RightAddableInt(...)Add[me: Int(M)](v: Int(M)) {

...

}

■ [chandlerc] The parameters to RightAddableInt look like explicit
parameters, not things that are deduced

■ Could we leave out the declaration of Add before its definition? Concern is
that it accepts a different type than is defined by the Addable interface,
but a type that can be implicitly converted to

○ [chandlerc] Another idea, which has desirable properties but is awkwardly very
verbose/redundant:

facet RightAddableInt(M:! Bigint, U:! ImplicitAs(Int(M))) {

impl Addable(U);

}

impl [M:! Bigint, U:! ImplicitAs(Int(M))]

Int(M) as Addable(U) = RightAddableInt(M, U);

■ Approximately equivalent to existing adapter solution
○ [zygoloid] Impls do already have a name, though it is long and awkward to say,

that would allow you to perform some of these tasks:

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 37 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

// Define a method out of line

fn [M:! Bigint, U:! ImplicitAs(Int(M))] (Int(M) as Addable(U)).Add(...)

// Delegate a method to another impl

impl [N:! BigInt] Int(N) as Addable(Int(N)) {

fn Add(...) = [M:! Bigint, U:! ImplicitAs(Int(M))] (Int(M) as Addable(U)).Add;

}

○ Contrast with the earlier named approach:

// Delegate a method to another impl

impl [N:! BigInt] Int(N) as Addable(Int(N)) {

fn Add(...) = RightAddableInt(N, Int(N)).Add;

}

○ The named approach is shorter, and more specific; since to convey the same info
we'd need to write:

// Delegate a method to another impl

impl [N:! BigInt] Int(N) as Addable(Int(N)) {

fn Add(...) = [M:! Bigint, U:! ImplicitAs(Int(M))]

(Int(M) as Addable(U) where M == N and U == Int(N)).Add;

}

○ Maybe we allow you to re-open an impl in the same file? Should have a distinct
syntax, and we're already using the keyword impl

○ We could also do a thing like the proposed use of @ in patterns, where you write:

impl [...] RightAddableInt(M, U) @ (Int(M) as Addable(U))

○ The RightAddableInt(M, U) @ part would be optional
● Question: Do we want a full inheritance system for default implementations between

impls?
○ We do want defaults in interfaces, but no defaulting to implementations in other

impls for now; will continue to look for a useful pattern using names somehow
● Also talked about as conversions, mostly going to stay with current proposal

○ More than one way to convert float -> int, need a name to distinguish the
semantics

● as to construct a class with private members -> use case for private impl
○ Concern: behavior in file with access to private impl is different than in other files

for the same lookups
○ Other use cases for private impl can be addressed by using a private adapter:

■ private assignment, private destructors for a reference-counted class
○ Maybe Self is an adapter with the same fields but public and supporting as for

construction
○ Example:

class X {

private var a: i32;

private var b: i32;

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 38 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

fn Make() -> X {

returned var me: X = {.a = 1, .b = 2};

me = {.a = 3, .b = 4};

me.a = 5;

return var;

}

fn Get() -> X {

// 5 options:

return {.a = 1, .b = 2};

return {.a = 1, .b = 2} as X;

return {.a = 1, .b = 2} as private X;

return {.a = 1, .b = 2} as Self;

return {.a = 1, .b = 2} as private Self;

}

}

○ Want all of these to work, and none should work outside the class as written
(since a and b are private).

○ Maybe will change impl lookup in a class member to also find impls on the
private self type.

○ Could impl private X as assignable, and then assignment would be allowed in a
class member

○ Conjecture: within a class member, Self has an implicit where clause Self ==
private Self. The body has the where clause, not the signature. Doesn't quite
work though: private Self is an adapter not a facet, but like the basic idea of
contextually allowing this lookup

○ Would like to be able to write a constraint that captures whether you have access
to private Self. Could just make private a type qualifier.

○ Maybe: where clauses make more impls available; private impls are examples of
impls that can be made available by where somehow.

○ Motivating use case is calling a generic with impls not available in public API --
but this can be solved using private adapter types.

○ Perhaps we should just abandon trying to support delegation of private access.
○ Instead, give up on the customizability of as when converting from a struct type

to a class type. Possibly this could be restricted to just when the struct has the
same field names as the class.

○ Conclusion: users are forbidden from defining an impl for As struct -> class type.
Compiler automatically defines struct -> class implicit conversion as part of class
definition, and only makes it available in class methods and friends if any data
member is private.

2021-10-18
● Attendees: chandlerc, josh11b, jonmeow, zygoloid
● [josh11b] New generics constraints proposal, still has some open questions on syntax

and naming

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 39 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● [josh11b] Do we have everything we need for operator interfaces?
○ Have: associated types, interface parameters
○ Still to come: parameterized impls, not sure if they are blocking

■ Find requirements on parameterized impls by seeing what we need for
operator interfaces

○ To decide: Should the library "add with Carbon's built in integer types" impl be
parameterized to add with anything that can implicitly convert to an int?

■ Probably better to just pick "yes" for now since that is one of the
anticipated use cases for supporting implicit conversions, and we need
experience to determine how that goes wrong

○ Rust uses a default of =Self for the RHS and return type. Concern that is weird for
Carbon.

■ Concern is what Addable() means outside of a context where Self is
known

■ Could make a named constraint that extends Addable, setting RHS to
Self if we don't want to allow that

○ Question: If an interface only has parameters with defaults, do you have to say ()
after it?

■ Provisionally yes, to be consistent with other function calling; contrary to
Rust which uses <...> to mean something a little different than a
function call.

■ If you want to add parameters to an interface that didn't start with them,
can make the parameterized thing have another name, and then use a
named constraint to make an alias for the thing with no parameters

■ Need type aliases to do the same thing for parameterized types
● [zygoloid] Would like a better story for arithmetic overflow

○ [chandlerc] Can solve this later
○ [zygoloid] From last week: integer types overflow behavior
○ claim is that most uses of unsigned integers want overflow to be an error
○ [zygoloid] Perhaps we have a modular type

■ [josh11b] Concern is that hashes still may want to use division
○ [chandlerc] Concern about the data from doc: question is about unsigned types,

but doc mostly covers signed types
● [zygoloid] Discussion about top-down vs. not top-down name lookup and info

propagation
○ [josh11b] Both small poll and recent language designs agree on not top-down
○ [chandlerc] Want to keep a lot of consistency with C++
○ [josh11b] Thinks more important to do what the majority of C++ programmers

want
○ [chandlerc] Not going to make-or-break people's opinion of Carbon
○ [chandlerc] People go to the source code in practice instead of generated

documentation, even in languages like Java with good generated documentation
tooling

■ Definitely cases where people do use generated doc: Python, TensorFlow;
so we are going to need both

○ [zygoloid] Forward declarations are complicated, but worth it

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 40 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ [zygoloid] Concern is corner cases
○ [chandlerc] Expect to solve corner cases using local fixes
○ [chandlerc] Thinks local fixes will generally be improvements overall

■ Example: overloaded functions need to be forward declared
■ An overload set is like a function, can only be called after it is declared
■ [chandlerc] lexically together?

● [zygoloid] would be awkward for some existing C++ cases, but
maybe those would be replaced by interfaces in Carbon

● [chandlerc] Destructors?
○ Would be fine with (a) C++ model or (b) using partial types, so you can only call

methods that are declared as compatible with destruction, no virtual calls
○ Need something, could change it later
○ Generic functions should be able to say whether they only take Type or can

possibly call the destructors
○ Leaning toward destructors are in an interface
○ Means we want to support external impls defined inside the class scope
○ Interfaces that correspond to syntax / operators should generally be external

■ Still want a nice name for the associated type return type
○ Don't want to support overloading via implementing the same parameterized

interface internally twice with different parameters
○ Parameterized interfaces default to external?
○ Perhaps in the future: Parameterized impl -> can inject the name of the interface

into the type with additional parameterization matching the parameterization of
the impl

■ Only for functions where the parameters of the interface can be deduced
from the parameters of the function

■ Basically means the function is overloaded, but only for a subset of the
functions

■ Non-function entities would never be visible, since no parameters to
deduce from

○ Parameterized impls are always external
○ Would be fine saying only language-defined interfaces for operators, such as

assignment, implicit conversions, and destructors, are external even when
declared internally

○ Maybe in-scope impls have privileged access, whether they are internal or
external, and out-of-scope impls only have public access

■ Chandler thinks this may be an orthogonal access control mechanism
○ Do we want more access control boundaries within a class?

■ Maybe can be supported via inheritance? Right now C++ users don't in
practice

■ Actually adapters support this better?
● [zygoloid] Concerned about Self type changing between methods for access control

○ Maybe have private facet only for delegation, otherwise use a rule like C++ where
some members can only be used from some scopes

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 41 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

2021-10-14
● Attendees: jonmeow, josh11b, zygoloid, jorgbrown
● [josh11b] F# has a mechanism for customizing what happens in a named blocks, used

for async (and maybe queries?), a bit like Haskell's do, see: Computation Expressions -
F#

● [zygoloid] Which combinations of signed/unsigned and overflow-errors/overflow-wraps
should we have?

○ C/C++ has: int signed&overflow-errors, unsigned unsigned&overflow-wraps, plus
some types that mix overflow-errors and overflow-wraps like signed/unsigned
char/short

○ Rust has: iN signed&overflow-errors, uN unsigned&overflow-errors,
Wrapping<iN>/Wrapping<uN> for signed/unsigned&overflow-wraps

○ C# has signed types, but overflow behavior depends on whether in a checked or
unchecked scope, not the type

○ Java has: int signed&overflow-wraps
○ Idea/proposal: iN signed&overflow-errors, uN unsigned&overflow-errors, and mN

"modular" that wraps but is neither signed or unsigned, so doesn't support <, /, or
>> operations

○ Would support the following conversions and casts:
■ uU -implicit> iI if U < I
■ iI -implicit> mM if I <= M
■ uU -implicit> mM if U <= M
■ iI -as> mM for all I, M
■ uU -as> mM for all U, M
■ mM -as> iI if I <= M
■ mM -as> uU if U <= M

○ iI models Z ∩ [-2I-1, 2I-1), uU models Z ∩ [0, 2U), and mM models Z / 2MZ
○ Can round-trip from iI or uU to mM if the modular type has at least as many bits
○ Swift and Zig model the difference between overflow-errors and overflow-wraps

not in the type but in the operation (e.g. + vs. +%)
○ [josh11b] Two candidates seem the most appealing:

■ Like C/C++ with iN signed&overflow-errors, uN unsigned&overflow-wraps
■ As proposed with iN/uN overflow-errors, and Modulo(N) with

modular/wrapping but no signedness
● Modulo(N) for hash & crypto use cases, not common enough for

mN shortcut
● uN for bit packing in cases where there is no room for a sign bit

● [josh11b] What about u31 being used for the type of an array index or array size?
○ [josh11b] Goal is to reflect constraints in the type system so generics can't fail
○ [josh11b] Recall earlier situation where objections to switching on type
○ we agree: overflow when adding generic integers => a monomorphization error

■ More generally: constant evaluation failure in any generic argument
○ [zygoloid] Didn't we say overlap due to specialization could also lead to a

monomorphization error?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/computation-expressions

Page 42 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ [josh11b] Specialization plan is not resolved. Fundamental issue is deciding what
to do when multiple blanket impls apply, as in:

■ BigInt + castable to CommonInt
■ Castable to CommonInt + LargeInt

○ [zygoloid] Any array taking >= 2^55 bytes leads to a monomorphization error, not
just negative sizes

○ [josh11b] Perhaps we should only allow generic + on BigInts, not iN?
○ Should array size be a template parameter? That way it would be legal to do a

range check and fail instantiation
○ Aren't array sizes the main use for non-const generics? If those won't be generic,

what else are non-type generics used for?
■ integer bit size

○ Specialization should require TypeId capability
■ if Type, only need a single instantiation
■ if Sized, only need an instantiation per size

○ Other use for generics is supporting dynamic dispatch, which is awkward with
specialization

○ Goal:
■ templates => instantiation can fail
■ generics => monomorphization succeeds. Constraints that could cause

failure are pushed to the consumer. True for types *and* non-types.
○ Conclusion: We only allow operations that are total to produce a generic value

■ so most operations result in runtime/dynamic values, even if the
arguments are generics. Example: + on two generic i32s produces a
runtime/dynamic value.

■ the things that can produce a generic value are:
● non-user-defined type constructors, like postfix-* and

parameterized types
● member access
● as expressions converting to facet types
● all things built into the compiler, no user-defined operations, so

compiler can validate be assured they are total
● overlap with things the compiler can invert so we can support

deduction with, but not the same
○ Conclusion: we support a way for templated types to implement a generic

interface, so they may be used by generics. Generics type check against the
interface, but the template instantiation is allowed to fail.

■ Model is that there is an implicit passing of the implementation of any
template or specialization used transitively for a type along with the
witness table of that type to the outermost generic call

■ May be tricky to support that directly with separate compilation, so
instead errors here may be generated late

● [zygoloid] What about the Modulo(N) vs. C/C++ question?
○ [josh11b] Would like to see how common the use cases are. If most of the

unsigned use cases are cases with wrapping, would prefer the C/C++ approach.
Concern is proliferation of types when wrapping is either correct or irrelevant for

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 43 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

most unsigned use cases. If most unsigned use cases don't want wrapping
behavior, a separate Modulo(N) type makes more sense.

2021-10-12
● Attendees: josh11b, geoffromer, wolff, gribozavr, zygoloid
● Trying to make programmers guide following by Rust-by-Example

○ [wolff] Assembling a spreadsheet with language questions to answer to fill this
out

○ [wolff] How much can we get by with just interop? E.g. maybe file I/O could be
done through C

● [gromer] Executable semantics: How can we structure the implementation of name
resolution and type checking to be resilient to changes in Carbon's design?

○ Originally was going to do name lookup during parsing
○ [josh11b] Separate passes? Or are the passes separable?
○ [geoffromer] Type resolution likely depends on name resolution, but name

resolution might also have to depend on type resolution for e.g. out-of-line
method definitions unless everything is qualified using Self

○ [zygoloid] Can push the language design to make this easier if we want to.
Complex trade-off space, not going to be an easy decision. Seems like we will
end up with something like C++ where you can re-enter a class' scope.

○ [josh11b] Flexible design for executable semantics so it doesn't depend on this
decision?

■ [zygoloid] Have unresolved identifier nodes get converted to resolved at
some unspecified point

■ [geoffromer] Only additive mutations unless you are making a deep copy
of the whole AST

■ Do AST nodes have parent pointers? Not at the moment, but some kinds
of up edges, e.g. break, continue, and return nodes

■ [josh11b] Could name resolution be an optional part of an identifier node
so it could be resolved additively?

● [geoffromer] Concern is once name resolution is done, envisioning
having a separate table with objects that represent each symbol,
so AST nodes that have names are changed to point to the
appropriate symbol. It is additive, but does introduce new nodes
which is complexity we may not want. New nodes would likely not
be AST nodes per se, but have considered both ways. Problem
with names pointing to AST nodes is things like overload sets that
don't have a single unique AST node representation.

○ [zygoloid] How do we want unqualified name lookup? Spectrum from top-down
approach to global availability of symbols.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 44 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ [geoffromer] Doesn't like either extreme. Would find it confusing if a later
local variable declaration can affect prior code in the function body like in
C#. A purely lexical name lookup rule seems like it would impose a lot of
awkward constraints without a lot of user benefit. Hunch is close to C++
but hopefully more coherent and principled

■ [josh11b] What sort of data would help make this decision? Seems like
this decision will be baked pretty deeply into the compiler

■ [gribozavr] Going to have way more users than compiler implementers
● [geoffromer] There will also be tooling authors

■ [geoffromer] If we can keep name lookup a separate phase prior to type
checking, could be a big enough conceptual simplification to be worth
entertaining. Re: data, we might just need to try it and see how onerous is
it to qualify everything in method definitions

■ [josh11b] Not just a compiler/tools issue, but a code reader vs. code
writer issue

■ [zygoloid] Any recent languages that use a top-down single-pass
approach? Could leverage their existing research?

● [geoffromer] Maybe Go? https://golang.org/doc/faq#principles
"There are no forward declarations and no header files; everything
is declared exactly once." A guiding principle of the design of the
language to avoid that bookkeeping and repetition.

● Python is weird; names in a function have special treatment if they
are assigned later in the function. Python mostly behaves as if
everything is visible everywhere

■ [geoffromer] Re: pain points, in personal experience as a writer it is an
occasional annoyance to have to shuffle things around. As a reader,
doesn't get much value from the upward looking rule; in class scope there
generally isn't an order and haven't had problems

■ [zygoloid] There is a fundamental difference between different scopes,
some scopes execute code sequentially have an inherent order, others the
ordering seems arbitrary.

■ [geoffromer] The order of data member declarations is significant, but it
doesn't seem very related to name lookup. Do agree with the basic point
that it makes a lot of sense to treat function bodies differently.

■ Are the cases: functions, classes, and namespaces? Interfaces and
choice types the same as classes; package scope like a namespace.

■ Seems like no recent languages use top-down single-pass.
■ [wolff] What about circular references?

● They happen and need to be supported
● [zygoloid] Circular references can arise from templates no matter

what, so will need to be diagnosed regardless of what name
lookup rule we use

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://golang.org/doc/faq#principles

Page 45 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Problems result from trying to instantiate a type when it is
currently being instantiated

● [geoffromer] Verbiage in C++ standard about when things are
instantiated is confusing today. But doesn't affect language users
as much. Would be nice if Carbon didn't have that complexity.

● [zygoloid] Comes up when implementing Variant, Any, or
something. It does make sense to say if you as a question of a
type and it can't answer, it should be a hard error

○ [geoffromer] a relatively recent adopter of IDEs; the
important question is what the IDE user's experience is
going to be like not how hard it is for the IDE implementer

○ [geoffromer] Easier to implement an IDE => good for
adoption

■ Autocomplete while code is being written?
● [zygoloid] Not innovative, lots of languages have already solved

this problem
● [gribozavr] Solved this for Swift in 3 months as an intern at Apple.

Type checking was trickier, such as dealing with generics, because
more reliant on the code being correct. In a C++ IDE, seems better
if you are at the top of the file to suggest things later in the file and
add the forward declaration if it is needed.

■ Have consensus among the people here, wait for Chandler to resolve

part 22021-10-05
● Attendees: geoffromer, dhollman, zygoloid, gribozavr, chandlerc, josh11b
● [josh11b]: Rewrite approach to executable semantics?

○ [geoffromer] somewhat in conflict with mutate-in-place approach without big
structural changes

○ [chandlerc] additive good, otherwise immutability of AST is valuable
○ [chandlerc] C++ standardization folks really intensely dislike rewrite rules, but that

is specific to C++; all proposed rewrite rules have turned out to be wrong in some
way

○ [chandlerc] People who teach C++ do explain it using rewrite rules, "the way this
works under the hood is as if <rewrite rule description>", even though they are
not precisely correct

○ [zygoloid] Came up recently with range-based for loop, variable is not in scope
despite where it would end up in a rewrite

○ [chandlerc] Carbon team has been describing things in terms of rewrites.
Controversial idea is to embrace this.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 46 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Model is to embrace rewrite rules in a specific way, where we actually
insist that the rewrite we describe is 100% accurate. If it isn't we don't
describe it with a rewrite rule. We would have a fairly rigid understanding
of the specific before and after language dialects. Two additional dialects
so far

■ One is a syntactically lowered, where lowering does not use type
information, "desugared representation". Operators and other part of the
expression grammar would be rewritten at this stage. Fewer and more
orthogonal primitives

■ Resolved representations after all type system resolution. Resolved:
overloads, implicit conversions, etc. Type checker of this representation
only needs to check type equality.

■ We don't want the rewriting-related concerns to distort the design of
language that users use.

■ Would like the clarity of understanding whether a new construct is a new
primitive or gets rewritten out

■ Would like the the result of the rewrite to be legal Carbon, could be
pasted into the source code input and get exactly the same semantics

● Would need some additional primitives that wouldn't be expected
for users to use

● Example: *p desugared to p.(Ptr.Deref)().__DEREF__ where
__DEREF__ is something that can turn raw pointers into l-values;
no way to keep people from using it

■ [geoffromer] Cautionary tale: range-based for loops, the basic lifetime
issue of temporaries to the right of the colon; arguments on both sides
about whether that's a bug that results from the specification as a rewrite.
This issue would have been noticed earlier by more people if it were not
effectively hidden in the rewrite. It seems like this approach would be
prone to those hazards.

■ [zygoloid] Do really like modelling semantic steps as a sequence of
incremental rewrites. That makes good sense, it is a well studied
approach. Another concern is we very likely want different semantics for
the lowered language. For example, no implicit conversions.

■ [gribozavr] The l-value issue is a good example. Swift has had problems
trying to expose this, because it isn't safe without a Rust borrow checker.

● or destructor calls
■ [chandlerc] Would absolutely want to have disjoint syntax whenever there

is disjoint semantics, just for clarity. So the l-value forming thing should
absolutely not use *.

● Would like a Carbon syntax for avoiding implicit conversions
anyway.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 47 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● Maybe accepting the rewritten language would require a debug
flag? Maybe okay unless we can't support mixing the two
languages.

■ [josh11b] I'd be more supportive if this was somehow not documented.
some escape hatch in the compiler or something

● Useful for people trying to propose features
● Would not be legal to check in, would be rejected unless opted in
● Otherwise this creates a lot of language design constraints that

don't seem beneficial and could have a lot of harm
● [dhollman] But....Hyrum's law?
● [gribozavr] like perma-unstable rust features

■ [geoffromer] if they're not part of the language as specified, they aren't
really useful for specifying carbon? so might defeat the purpose..

■ [geoffromer] creating a syntactic space where implicit conversions can't
happen seems like that might be a separate language that would be
union-able. implicit conversions happen in so many places. function call
syntax, initialization, etc. at that point the value proposition seems unclear

■ [chandlerc] There should be a syntax that is guaranteed to have no
implicit conversions, this should at least be doable.

■ [chandlerc] Agree with the language design constraint, if we have this it
will get used, has to be restricted. Should not spend time supporting
language evolution at this level. No support or stability guarantees for
anything with some underbar syntax. Requires a flag. Strongest barrier
would be to refuse to union the languages. Would be fine to document it
and include it in the specification.

■ [chandlerc] Personal preference: some kind of delimiting syntax to
designate regions with the lowered languages; could limit switching to
this, e.g. not in the expression grammar, only at a block or statement
level; plus maybe a flag

● [josh11b] my preference would be the flag to default to disallowing
● [chandlerc] flag would default to allowing
● [chandlerc] libraries might use this to workaround a bug until a

new compiler release is available; sympathetic to wanting more
tools for libraries to deal with problems

● [chandlerc] Example: we currently check in inline assembly at
Google to work around bugs; also use some extremely sketch
C++ constructs to turn off parts of C++ to work around bugs

● [chandlerc] More of an engineering-trade-off than a big deal.
● [josh11b] Maybe a flag that defaults off but a library can turn on for

itself?
■ [zygoloid] Any languages that expose a lower-level language?

● [josh11b] maybe example: MLIR

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 48 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● [chandlerc] maybe: Lisps, most embedded DSLs rewrite
● [josh11b] Scheme?
● [chandlerc] Originally CFront was defined as a rewrite to C
● [dhollman] LaTeX lowering to TeX
● [chandlerc] Scala semantics are defined by a primitive subset of

Java which is equivalent to JVM bytecode
● [chandlerc] Modern Java rewrites to a proper subset of Java
● [chandlerc] Kotlin includes ability to have Java code
● [dhollman] CUDA

■ [zygoloid] None of the above are rewrites for the reasons we are
considering

● CUDA rewrite process can go wrong, necessitating bypassing
● CUDA could only handle what could be rewritten to a host

compiler, but not trying to limit to natural translation
■ [dhollman] What is the connection between a rewrite and generative

metaprogramming?
● [chandlerc] Think we will discover when we try to define these

lowered languages, I think we will discover useful facilities to
expose in Carbon for the purpose of metaprogramming.

● Might want to have a metaprogram that writes in the language of
users, other metaprograms that produce code in a lowered
language without implicit conversions and so on

■ [dhollman] Want the rewrite to produce something that is clearly defined
but not necessarily readable, similar to a metaprogram or the output of
the compiler. Focus is how easy it is to reason about. Could be disjoint or
a pure subset. Would like this to be the same as what metaprograms
produce.

■ [josh11b] to be clear, we both *speculated* about both use cases, we
didn't discuss concrete motivating examples

■ [dhollman] readable rewritten code is a pipedream. code generation to
something that is readable is not typically worth the effort. certainly not at
the expense of not being able to reason about the code or meta code

■ [gribozvar] reason we couldn't expose L-values as a first class construct
is that they aren't safe and the don't fit in the language. but they do fit
within the rewrite model. the issue is we don't provide facilities in the
language to do their own rewrites. <something I missed>. does seem to
be a good connection between metaprogramming and this. these kinds of
low-level features don't make sense w/o some user controlled rewriting to
make use of them

■ [zygoloid] Primary concern in this space, whatever generative meta
programming facilities should produce a semantic representation of
whatever its using and not tokens and not whatever the equivalent of the

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://en.wikipedia.org/wiki/Cfront

Page 49 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

source form. Then it matters less whether it is a higher or lower level
language.

■ [dhollman] What examples do we have?
■ [zygoloid] Show me how you interpreted this code? Many compilers can

do this: Swift, Rust, GHC, etc. Useful for user's understanding and
particularly for debugging metaprograms. Gives most of the value, maybe
not all of it.

■ [chandlerc] So maybe hypothesize what the right trade-off it would be.
Utility in at least considering adding to the language proper. Features that
would come trying to represent this lowered form. Something which is
guaranteed to not trigger implicit conversions.

■ [zygoloid] A problem for library design, relying on implicit conversion so
that Foo arguments get converted to Bar invisibly

■ [chandlerc] Can already do this using templates. What would we need to
produce a fully resolved expression? We don't need to express that over
time, just guarantee that there are not additional conversions when there
is already an exact match. Want the ability to select a specific overload
and call it, have it in C++ and probably want it in Carbon. Also features
that we don't want to expose like l-value formation.

■ [geoffromer] Mentally equating "code with no implicit conversions" and
"code that asserts it has no implicit conversions"; first is easy and
straightforward the second is very difficult.

■ [dhollman] There is an assumption in this discussion that implicit
conversions are a useful tool for refactoring. Maybe not getting the same
overload is maybe a feature, maybe we need better refactoring tools and
metaprogramming.

■ [zygoloid] Picking a particular overload out of an overload set to mee feels
very much like punching through an abstraction boundary; probably
reflection could do this exactly, like reflection shouldn't use it most of the
time, it is brittle; want an obvious source-level marker for this just like
reflection

■ [josh11b] Don't think this provides motivation for including something in
Carbon, would only want to see things available in Carbon if they were
motivated by a use case of actual users using the language

2021-10-05
● Attendees: chandlerc, josh11b
● Discussion about defining Carbon semantics in terms of rewrites

○ Two phases:

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 50 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ one that doesn't use types but can produce unqualified method calls and
does not resolve overloads, and

■ one that uses types and produces only resolved calls
○ Desire: there exists some Carbon syntax for specifying the specific overload and

implicit parameters so that the result of the rewrite is still legal Carbon
■ Might use this syntax in meta-programming where you sometimes want

to specify exact types instead of relying on overload resolution
○ Possibly useful for explaining what the compiler is doing

● What are the dependencies on Generics, in particular constraints?
○ Operator interfaces probably don't require constraints
○ Standard library probably will use constraints for e.g. container interfaces
○ Will want an iteration interface for range-based for, probably won't use

constraints
○ [josh11b@] we will support both a[3..10] and a[5] by selecting between

different interface parameters in the Index interface used by the [] operator.
■ 3..10 would make an integer range that could be passed into a

range-based for as well as []

2021-10-04
● Attendees: josh11b, zygoloid, chandlerc
● Generic constraint options:

Swift / Knuth-Bendix Same drawbacks as before

Rewrite to arg passing Broken

Arg passing Broken

Emoji algorithm Broken

Regular equivalence classes Unknown if we can make terminate

Restrictions No candidates yet

Manual, only one automatic where clause conversion Verbosity and ergonomic concerns

● Considering "restrictions" approach
○ Goal is to discover what restrictions are viable and which use cases are needed
○ Could pair with "Swift / Knuth-Bendix", or maybe restrictions themselves support

an algorithm
○ Goal would be to have a set of restrictions that:

■ Allows desired use cases
■ Can be evaluated

○ Candidate initial desired use case is this example from Swift (look for
"Considering the following definitions"):

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://forums.swift.org/t/formalizing-swift-generics-as-a-term-rewriting-system/45175

Page 51 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

protocol IteratorProtocol {

associatedtype Element

}

protocol Sequence {

associatedtype Iterator : IteratorProtocol

where Iterator.Element == Element

}

protocol Collection {

associatedtype Element

associatedtype SubSequence

where SubSequence : Sequence,

SubSequence : Collection,

SubSequence.Element == Element,

SubSequence.SubSequence == SubSequence

associatedtype Index

associatedtype Indices

where Indices : Sequence,

Indices : Collection,

Indices.Element == Index,

Indices.Index == Index,

SubSequence.Index == Index,

Indices.SubSequence == Indices

}

○ Note that this example could be represented by just .A == B restrictions with no
forward references, but that turns out to not be very restrictive.

○ One idea is to say it has to reach a "steady state" at some defined point:
■ If you are recursive then either equal (==) or independent
■ The N-th is like the 2nd

○ Hope is this admits an algorithm that does a finite amount of search since it only
has to consider through the point the steady state is established

○ Still hard to make this rigorous when have many associated types that implement
the current interface recursively -- Subsequence is treated differently than
Indices

● What about the manual approach?
○ Is this something that would combine / layer on top of another approach to

handle cases where it could not tell two expressions name the same type?
■ Not really -- with the Swift / Knuth-Bendix approach we want to reject

interfaces that the algorithm doesn't succeed for, so we can have
definitive answers for some type questions. This is because if we have

X:! A;

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 52 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

Y:! B where Y == X;

we want Y to have type A & B.
○ We want constraints to allow us to give more specific types to the members of

interfaces we use. An example:

interface Graph {

let E:! Edge;

let V:! Vert where .E == E and .Self == E.V;

}

○ Sad not being able to write this more symmetrically, like where V.E == E and V
== E.V.

■ We need some approach that works for types that don't have names, can
add more later.

○ If we allowed forward reference, could write a different symmetric approach:

interface Graph {

let E:! Edge where .V == V;

let V:! Vert where .E == E;

}

○ How would that example work with the manual approach to generic constraints?

interface Vert {

let E:! Type;

fn EdgesFrom[me: Self]() -> Vector(E);

}

interface Edge {

let V:! Type;

fn Head... -> V;

fn Tail... -> V;

}

interface Graph {

let E:! Edge;

let V:! Vert where .E == E and .Self == E.V;

}

// Return the number of vertices reachable

// by following edges from `start`.

fn Reachable[G:! Graph where G.V is Hashable](g: G, start: G.V) -> i64 {

var h: HashSet(G.V);

var q: Queue(G.V);

q.Insert(start);

while (not q.Empty()) {

var v: G.V = q.Dequeue();

if (h.Has(v)) { continue; }

h.Insert(v);

// auto is deduced to be `G.V.E` which is `Type`, does not have a `Tail`

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 53 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

method.

// Could follow one `where` and discover `G.V.E == G.E` which is `Edge` and

// has a `Tail` method, but that would make the code brittle to also finding

// another type that also implements `Tail` (like `Cat`).

// Code works fine if `auto` is replaced by `G.E`.

for (var e: auto in v.EdgesFrom()) {

// If we allow you to call `Tail` on a value of type `G.V.E`, then the result

would

// have type `G.V.E.V` which can't be converted to `G.V`, the type accepted

by

// `q.Insert(...)`, with a single `where`. If `e` is given type `G.E` instead

of auto

// then e.Tail() is legal, returns a value of type G.E.V which can be

converted

// to G.V for q.Insert(...) using a single where.

q.Insert(e.Tail());

}

}

return h.Size();

}

○ v.EdgesFrom() returns a value of type Vector(G.V.E). The range-based-for will
cast that to an iteration interface, as in Vector(G.V.E) as Iterable, and then
e will be initialized from a value of type (Vector(G.V.E) as
Iterable).Element. Vector, to be useful from generic code, needs to be able to
promise that (Vector(T) as Iterable).Element == T for all T, even in the
presence of specialization of Vector. This equality is a fact about the type of
Vector(T), *not* the result of a where clause and so does not count toward the
"one where clause" searching limit.

○ e: auto gives G.V.E, which has type Type and does not have a Tail method,
requires a cast to G.E. But e.Tail() returns a G.E.V which can be implicitly
converted to G.V, the parameter type of q.insert.

○ Could use all where ... is Interface clauses, but only one hop of where ...
== ... clauses

■ Would avoid the need to have additional observe clauses for interfaces,
as in observe G.E as Cat == G.V.E as Cat;

■ If we did require those observe clauses, it would be enough to allow G.E
as (Cat & Edge) without further observations.

○ This would result in more explicit types more than it would result in more casts
○ Does it matter whether HashSet is declared class HashSet(T:! Type where

.Self is Hashable) or class HashSet(T:! Hashable)?
■ Biggest concern is what h.Front() returns, want the answer to be G.V in

both cases, not G.V as Hashable
■ Just like G.V and G.V as Hashable are facets of each other,

HashSet(G.V) and HashSet(G.V as Hashable) are facets of each
other. The difference between them is whether they return G.V or G.V as
Hashable in the methods.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 54 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ The distinction would only affect the definition of the body of the methods
of the class, not users of the class

■ Same for functions as classes
■ Simpler to explain if this behavior affects the parameter types in addition

to return types, even though this may not be observable
■ -> T gives you the caller's T, [T:! Container](...) -> T.Element,

get caller's T.(Container.Element)
○ Property we would like for observe: Strong version: it can only make an invlaid

program valid, it cannot change the meaning of a previously valid program.
Essential version: ... that is still valid.

■ Imagine we have two possible types transitively reachable from where
clauses: Cat and Edge that both have a Tail method. Concern is what
happens if an observe can make both visible when only one was before
at some site calling Tail.

■ Essential version still holds regardless as long as the ambiguity results in
error rather than a change in which Tail method is called.

■ If observe only added interface implementations externally, then would
get the stronger property.

● Standard library
○ Print functions

■ Log would interact with the libc file buffering, used for both "Hello World"
or printf-debugging, maybe via a separate Debug that uses Log, but
includes time, file, line, etc.

■ Separate StdIn/StdOut for dealing with files piped at the command line
○ Formatted strings can produce streams

■ can be converted to a string easily
■ can be consumed by Log and file IO to use the existing buffer

○ Put enough (Log) in the prelude for "Hello World"
■ Maybe: Log(Print, "Hello World")

○ Maybe have hooks in logging to handle Google-scale logging facilities
○ Where does --help output go? Print
○ Will design translatable strings separately from other string formatting

■ Experts will have specific ideas about what to do with translatable strings
● Want T:! Type to give no capabilities so that we can always have a single instantiation.

Means not just unsized, but not destructible!
○ Maybe have some applications for types that are not destructible. Perhaps we

want to support linear types that can only be destroyed by becoming unformed
as a result of being moved?

● What are our basic interfaces? Here -> means "implies"
○ Copyable -> Sized -> Type
○ Movable requires HasUnformed, but Copyable doesn't
○ Movable -> HasUnformed -> Sized
○ Copyable & HasUnformed -> Movable
○ TriviallyCopyable & TriviallyDestructible & HasUnformed -> EfficientlyMovable
○ Maybe:

■ Copyable & TriviallyDestructible -> Relocatable?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 55 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Movable -> Relocatable -> Sized
○ No, instead:

■ Copyable -> Relocatable -> Type
■ Relocatable does not imply Sized

○ TriviallyCopyable -> TriviallyRelocatable, meaning "can be memcpy-ed"
○ Contrast with EasilyRelocatable, which means it has a post-memcpy fixup. To be

useful for realloc use cases, may be given old pointer or pointer offset, but old
pointer will be invalid to access

○ Types, Type of Types, function values are *not* sized and so can't be used with
var. May also not be destructible.

○ literals are not storable, so irrelevant if they are sized (possibly they are 0-sized),
they can't be used with var or be the pointee of a pointer type

2021-09-28
● Attendees: josh11b, zygoloid, chandlerc, jonmeow, geoffromer
● Review of yesterday's meeting
● The intermediate vertices in a DFA correspond to types that we know something about,

but that aren't the same as the equivalence class that we are defining.
○ The accept vertex will be the equivalence class we are defining
○ For (A|B)C, A|B may not be an equivalence class, but it is an expression that we

know more about
● Applying the completeness rule to itself: if it repeats, have the commutator case that is

problematic
○ don't know if can also fail to terminate via mutual recursion

● Doesn't rule out X = YXY case that isn't regular
○ would match YXYXY in two overlapping ways: XXY and YXX
○ More generally there is a concern with Z=YXY
○ What happens when you complete it with itself?

■ YXYXY|YXZ|ZXY
■ YXYXYXY|YXYXZ|YXZXY|ZXYXY|ZXZ
■ infinite family of equivalence classes, not regular
■ so forbid it

● Bool -> int conversion
○ true -> 1, false -> 0 is a bit arbitrary, e.g. true <-> -1 is also plausible
○ do we want to allow ints as the arguments to if, and, or, and so on?

■ No, benefit from being explicit boolean, experience is that is error prone
■ People use that conversion more commonly than wanting to convert a

bool -> int
○ Something about nullable pointers and optional values
○ Implicit conversion bool -> int problematic, but no history of bool -> int explicit

conversion bugs
○ [geoffromer] Works farther from the hardware, experience is treating it as a

choice type, where the specific value is not important
■ minor readability stumbling block in code that converts bools to ints

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 56 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ doesn't have a better spelling that doesn't involve control flow, concedes
that this operation is still desired/useful

■ if there was a good name for a function, would be better, but best is
"ToInt" which is basically the same as "as Int"

○ Use cases:
■ [zygoloid] count number of trues in a set of bools
■ [chandlerc] turn a bool into a mask

○ Unsurprising, conventional to use 0, 1, even if it isn't obvious
○ AsBit
○ [chandlerc] For hardening, want zeroed memory to be treating bools as false;

similarly zeroing will clear flags
○ [zygoloid] Analogy with zeroing pointers is that we don't necessarily want a

correspondence between pointers and integers
○ [geoffromer] Uncomfortable with converting a bool to an int roughly to the same

extent and for roughly the same reasons uncomfortable with using integer types
for bit smashing

■ [geoffromer] Withdraw objections to bool -> int conversion, unless and
until we get a dedicated bit smashing type

○ [chandlerc] Stepanov's description of what makes C++ special, would like to keep
in Carbon:

■ exposing the bits of the hardware to the user
■ the addresses of objects is exposed
■ building abstractions on those two

○ Maybe can make the bit operations a bit more user friendly, but definitely like
exposing that integers are represented as bits in 2s-complement, etc.

○ Exception: special x86 instruction MOVMSK that takes the *high* bit of a a simd
vector and compresses them into the bits of an integer

○ [geoffromer] Conversion from bool -> int skips a step, should go through a bit first
■ [chandlerc] u1, the canonical type for a bit, does implicitly convert to any

integer type
○ [zygoloid] what is the intent uN type?

■ [chandlerc] a sequence of bits modelling an integer
■ Is the byte type the same thing as u8? there are other types that represent

the aliasing or poisoning properties when reading memory
○ [geoffromer] Maybe we should restrict conversion from uN to signed integer

types
■ [chandlerc] no principled reason, just utilitarian and following the history

of C & C++
■ [chandlerc] if we allow shifting, bit-oring, masking, etc. on uN types, then

they are really collections of bits
○ [zygoloid] started with allowing explicit conversions in both directions

■ but now not convinced by the utility of the bool -> int conversion
■ [chandlerc] would be horrible to rewrite code that turns conditions into

bitmasks
■ [zygoloid] actually uses (condition) ? NOT_JUST_ONE_MASK : 0 in

practice

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 57 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ can't currently justify having just bool -> int without int -> bool
■ revisiting this: rationale is that we have an obvious and unsurprising

embedding from bool -> int that preserves bit operations (there are others
like false -> 0, true -> -1, but that would be surprising to some); on the
other hand it's not obvious in the same way what int -> bool should do: 0
as bool and 1 as bool seem fine, but what is 2 as bool? any answer
seems like it would be surprising to some.

● Back to generic type checking
○ Don't know if completion will terminate

■ Could have the restriction that every equivalence class corresponds to a
where clause

■ MAYBE: If completion identifies overlap that would create a new rule, error
■ eliminates overlap that isn't containment

○ What about the compatibility rule?
■ about containment
■ Does containment form a partial order?

● No, no containment in the edge/vertex/graph case
■ edge/vertex/graph case is a graph with a start point and two other

vertices, both of which accept different equivalence classes
■ intuitively terminates, but no obvious reason yet

○ Question: can we get infinite completion between two different rules without ever
having a single rule be self-incomplete?

■ A(BC)* (CB)*D

2021-09-27
● Attendees: josh11b, zygoloid, chandlerc, jonmeow
● [josh11b] Comparison of generic constraint type checking algorithms

Terminates Correct Expressive Clear what's
legal

Easy to say
what you

want

Swift/Knuth-
Bendix

Undecidable,
uses a step

limit

Yes Yes No Yes

Argument
passing

Yes Probably Medium Yes Low

Rewrite to
arg passing

Yes ? Medium Low Yes

Emoji
algorithm

Yes ? Yes ? Yes

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://forums.swift.org/t/formalizing-swift-generics-as-a-term-rewriting-system/45175
https://gist.github.com/slavapestov/75dbec34f9eba5fb4a4a00b1ee520d0b
https://gist.github.com/slavapestov/75dbec34f9eba5fb4a4a00b1ee520d0b

Page 58 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

New: Regular Still working
out details

Yes Low, but
likely enough

Yes Yes

● [josh11b] Argument passing approach has a terminating type equality algorithm, but
relies on type checking which hasn't yet been fully specified to validate that uses of Self
and .Self are okay

● [josh11b] Argument passing approach relies on user-provided order without forward
references, rewrite to arg passing has to invent this order, which hasn't been fully
specified yet

● [josh11b] Emoji algorithm approach emerged from trying to use type checking to validate
an interface declaration independent of forward references, to remove limitations that
are more awkward to understand in the where syntax than the argument passing syntax

● [joshl11b] Emoji algorithm was being worked out in this doc, works by putting each
interface or function declaration in a normal form. Normal forms may be composed by
treating them as directed graphs and overlaying rooted at different points using graph
traversals

○ Main idea is that you run the type canonicalization algorithm used at query time
"enough" at interface type checking time that any problems would be detected

○ Hope was that we could type check each interface in isolation and the
composition would be good by induction

○ Problems with the algorithm are related to the results being sensitive to traversal
order so danger of inconsistency between different queries and between queries
and type checking

○ Tried to make changes to type checking to detect situations where it was
sensitive to order and reject, but tricky to validate that is sufficient and tricky to
characterize the situations where it will reject

○ "Commutator" relations (X.Y == Y.X) seem particularly problematic
● [josh11b] New algorithm starts with the motivation that we are willing to sacrifice

expressivity in favor of making it clear what is legal since there are relatively few
patterns we have use cases for

○ Important to support rewrites like X<->X.Y and Y<->X.Y but not X.Y<->Y.X
which seems to be a source of trouble

○ Simplifying assumption for now: all associated types have type that is recursively
the same interface, and have 1 letter names

○ Simple example: let's say we have a rule like X<->Y. Replace every occurrence of
X or Y in queries and rules with a new symbol α.

○ Consider these two rules: A <-> A.B and B <-> B.C. Can we rewrite A.C to A?
Yes, but only by making the sequence longer before making it shorter: A.C ->
A.B.C -> A.B -> A. Not clear how to find this rewrite.

○ Solve this problem by considering this harder problem: can we characterize the
entire equivalence class of sequences the rewrite rule can rewrite between.

○ In many cases, the equivalence classes are regular languages, and can be
represented by regexps.

■ For the X<->Y example, the regexp is (X|Y), which we can use in place of
the symbol α.

■ A <-> AB => AB*
■ A <-> AB + B <-> BC => A(BC*)*, BC*

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://docs.google.com/document/d/1A7UkSRxagwjO52l-rGjToPTbczQIB9mhDh05Od8iW9s/edit#

Page 59 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Problem cases are commutators
■ XY <-> YX
■ C <-> AB and C <-> BA
■ ABC <-> CBA
■ These require an infinite family of regular expressions
■ So we'll exclude these

○ Only using *, or, and concat
■ B <-> ABA would require back references, out of scope

○ Example with multiple interfaces:

interface Graph {

let E:! Edge;

let V:! Vertex where .E == E and .Self == E.V;

}

Want to combine E.(Edge.V) | V and E | V.(Vertex.E). Substituting gives:

(E | V.(Vertex.E)).(Edge.V) | V

-> E.(Edge.V) | V.(Vertex.E).(Edge.V) | V

-> E.(Edge.V) | V(.(Vertex.E).(Edge.V))*

-> (E.(Edge.V) | V)(.(Vertex.E).(Edge.V))*

-> (E.((Edge.V).(Vertex.E))*.(Edge.V) | V(.(Vertex.E).(Edge.V))*

○ Rules with partial overlap, such as d <-> ab and e <-> bc
■ Need to create a rule for the union in the case they overlap
■ (abc|ae|dc), (d|ab), (e|bc)
■ Could forbid this case, but seems supportable with additional code

○ Goal: accept constraints where there are a finite number of equivalence classes
each of which is a regular language

○ Achieve soundness with three things:
■ 1. Compatibility: for A, B in R, a set of regexps, are compatible if for every

string S matching A, with a substring SB1 matching B, then (S with SB1
replaced by SB2 also matching B) also matches A

■ 2. Completeness: for A, B in R, a set of regexps, S a string, where A, B
match overlapping substrings of S, *then* there exists C in R matching the
union of the substrings with C compatible with A and B

■ 3. Finiteness
○ Can achieve compatibility by glueing in the DFA for B into its match in the DFA for

A, and then resolving having two edges with the same label exiting a node using
the NFA->DFA algorithm: https://photos.app.goo.gl/VcZwJNtCP7BmLRzG6

○ Not all regexps correspond to equivalence classes
■ (AA* | B) does not correspond, since B -> AA -> BA and B->AA->AB

so the equivalence class is actually (A|B)*
■ In general, all accept states will be a single node

○ Unifying the accept states is a special case of stitching a regexp's DFA into itself
to make it compatible with itself, we actually need this more general operation.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://photos.app.goo.gl/VcZwJNtCP7BmLRzG6

Page 60 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

2021-09-20
● Attendees: josh11b, zygoloid, chandlerc, jonmeow
● [speaker] Comments

○ More comments
● Looked at the archetype algorithm, in particular where clause rewrites

○ Goals are: 1) Correct, 2) Terminates, 3) Expressive, 4) Ergonomic
○ Simple example

interface Container {

let Elt:! Type;

let Iter:! Iterator where .Elt == Elt;

let Slice:! Container where .Elt == Elt and .Slice == .Self;

}

is mechanically rewritten to:

Container

* $1 :! Type

- Elt as Type

* $2 :! Iterator

- Iter as Iterator

* $3 :! Container

- Slice as Container

* $0 :! Container{.Elt = $1, .Iter = $2, .Slice = $3}

- Self as Container

Iter where .Elt == Elt

Slice where .Elt == Elt and .Slice == .Self;

and then where clauses are rewritten one at a time in order to get:

Container

* $1 :! Type

- Elt as Type

- Iter.Elt as Type

- Slice.Elt as Type

* $2 :! Iterator{.Elt = $1}

- Iter as Iterator

* $3 :! Container{.Elt = $1, .Slice = $3}

- Slice as Container

- Slice.Slice as Container

* $0 :! Container{.Elt = $1, .Iter = $2, .Slice = $3}

- Self as Container

○ Recursing in the __combine__(A{.X=S}, A{.X=T}) case is desirable for this
example:

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 61 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

Z:! A where .Y is Comparable;

X:! A where .Y is Printable; // and we don't want to have to say "and .Y == Z.Y"

W:! B where .V == Z and .V == X;

○ Everything looks finite, seems like we should be able to do all rewrites, even
__combine__(A{.X=S}, A{.X=T}) in finite number steps

○ What goes wrong with Impossible? Type checking?

interface Impossible {

let A :! Impossible;

let B :! Impossible;

let C :! Impossible where A.C == C.A and B.C == C.B;

let D :! Impossible where A.D == D.A and B.D == D.B;

let E :! Impossible where C.E == E.C.A and D.E == E.D.B and C.C.A == C.C.A.E;

}

Partially converted to normal form:

Impossible

* $1 :! __combine__(__typeof__(A.C), __typeof__(C.A))

- A.C

- C.A

* $2 :! __combine__(__typeof__(B.C), __typeof__(C.B))

- B.C

- C.B

* $3 :! __combine__(__typeof__(A.D), __typeof__(D.A))

- A.D

- D.A

* $4 :! __combine__(__typeof__(B.D), __typeof__(D.B))

- B.D

- D.B

* $5 :! __combine__(__typeof__(C.E), __typeof__(E.C.A))

- C.E

- E.C.A

* $6 :! __typeof__(E.C){.A = $5}

- E.C

* $7 :! __combine__(__typeof__(D.E), __typeof__(E.D.B))

- D.E

- E.D.B

* $8 :! __typeof__(E.D){.B = $7}

- E.D

* $9 :! __combine__(__typeof__(C.C.A), __typeof__(C.C.A.E)){.E = $9}

- C.C.A

- C.C.A.E

* $10 :! __typeof__(C.C){.A = $9}

- C.C

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 62 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

* $11 :! Impossible{.C = $1, .D = $3}

- A

* $12 :! Impossible{.C = $2, .D = $4}

- B

* $13 :! Impossible{.A = $1, .B = $2, .C = $10, .E = $5}

- C

* $14 :! Impossible{.A = $3, .B = $4, .E = $7}

- D

* $15 :! Impossible{.C = $6, .D = $8}

- E

* $0 :! Impossible{.A = $11, .B = $12, .C = $13, .D = $14, .E = $15}

- Self

Josh thinks this just becomes:

Impossible

* $1 :! Impossible

- A.C

- C.A

* $2 :! Impossible

- B.C

- C.B

* $3 :! Impossible

- A.D

- D.A

* $4 :! Impossible

- B.D

- D.B

* $5 :! Impossible

- C.E

- E.C.A

* $6 :! Impossible{.A = $5}

- E.C

* $7 :! Impossible

- D.E

- E.D.B

* $8 :! Impossible{.B = $7}

- E.D

* $9 :! Impossible{.E = $9}

- C.C.A

- C.C.A.E

* $10 :! Impossible{.A = $9}

- C.C

* $11 :! Impossible{.C = $1, .D = $3}

- A

* $12 :! Impossible{.C = $2, .D = $4}

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 63 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

- B

* $13 :! Impossible{.A = $1, .B = $2, .C = $10, .E = $5}

- C

* $14 :! Impossible{.A = $3, .B = $4, .E = $7}

- D

* $15 :! Impossible{.C = $6, .D = $8}

- E

* $0 :! Impossible{.A = $11, .B = $12, .C = $13, .D = $14, .E = $15}

- Self

Only place where type checking isn't satisfied constructively is when you use .Self or Self.

interface E {

let R:! Type;

}

interface A {

let Q:! E;

let P:! E;

let Y:! A where .Q == Q and .P == Q;

}

interface B {

let X:! A where .Y == .Self and .P == .Q;

}

The condition let Y:! A where .Q == Q is satisfied automatically for let X:! A where
.Y=.Self. However let Y:! A where ... and .P == Q requires the .P == .Q restriction on
X, otherwise it wouldn't pass type checking.

Impossible fails to type-check because, while we know that $9 refers to itself when referred to
within C.C, we don't know that the same applies recursively within C.C.C. Put another way, the
value $10 does not satisfy the type rule $13 – the invented $10 value does not type-check as an
Impossible.C value – because we don't know that $10.C.A == $10.C.

zygoloid thinks we would see the same problem with other kinds of indirect self-reference:

interface Container {

let Slice:! Container where .Slice == .Self;

let Subseq:! Container where .Slice == Slice;

}

Here, we would not know that Subseq.Slice.Slice == Subseq.Slice and so would be
unable to verify that the value we invent to represent Subseq is a Container.

Another undecidable word problem: https://screenshot.googleplex.com/BgjhEJstpmMPZiG

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://screenshot.googleplex.com/BgjhEJstpmMPZiG

Page 64 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

2021-09-16
● Attendees: chandlerc, zygoloid, jonmeow, josh11b
● Let's say we have an i12 field of a packed struct called y, a.y + b.y should be an i12

so it can be assigned to c.y without a cast
● Only i8, i16, etc. are legal outside of a packed struct declaration, inside a packed struct

declaration, i1, i2, etc. and u1, u2, etc. are legal; if you really need an unusual size
outside a packed struct declaration, use Int(N) or Unsigned(N)

● Only concerned about hardening + at a coarse granularity, not the expression level.
● Arithmetic between literals and a non-literal is a compile error if the literal doesn't fit in

the non-literal's type.
● Only known literals can be converted to Int(N) or Unsigned(N), not generic literals.

Conversion operator is templated on input literal.
● Templates can have an if clause that can disable the function based on an arbitrary

computation on the actual instantiated values of template parameters, and build
constants like IS_WIN64_BUILD

● Will need something like adapters but with restricted casts: types that are produced after
validation, facets that give capabilities like the read and write ends of a pipe being facets
of the same value, private access, const access

● Want two kinds of as, following C++ having multiple casts; regular as would be for the
safe things like implicit conversions, the other as would support truncation, etc.

● So two interfaces but no distinction between As and ImplicitAs, the distinction is
between As and UnsafeAs

● May also have TryAs that implies UnsafeAs, but not all UnsafeAs come from TryAs e.g.
casting away const. So As implies TryAs implies UnsafeAs, via blanket impl and
possible requirement

● Question: have fn F[U:! Type, T:! As(U)](x: T, y: U) that calls fn G[U:!
Type, T:! TryAs(U)](x: T, y: U), is the blanket impl of TryAs(U) for things that
implement As(U) enough for the call to G to succeed, or does As have to explicitly have a
requirement on TryAs?

○ One concern with blanket impls is whether having one guarantees that you can
instantiate. Question is whether instantiation can be blocked by a conflict with
some other blanket impl that makes impl selection ambiguous.

● Do we expect inheritance to be used more narrowly than C++, for only its traditional use
case of refinement of an abstract type?

2021-09-13
● Attendees: zygoloid, josh11b, jonmeow, chandlerc
● Apple + Apple should only look up implementations that are associated with Apple or

+
○ Want to avoid a situation where Banana depends on Apple and introduces an

implicit Apple->Banana conversion and an Apple + Banana operation and the
ability to do Apple + Apple depends on whether Banana is imported

■ Three components:

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 65 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

● Banana defines an implicit conversion from Apple to Banana
● Banana defines an Apple + Banana operation
● client code performs Apple + Apple

■ Combination of these three should be invalid, so one of these three
should be invalid (or something like doing 1 and 2 together is invalid). But
which is invalid?

● We think we need Apple -> Banana for interop and modeling
converting constructors

● We think we need Apple + Banana
● So Apple + Apple should not select (and maybe not even find)

the Apple + Banana operation
○ Concrete example:

// Represents a type that behaves like a tuple.

interface TupleLike { … }

class Scalar { … }

// Allow scalar * tuple.

impl [T:! TupleLike] Scalar as Mul(T) { … }

class Vector(T:! Type, N:! i32) { … }

impl [T:! Type, N:! i32] Vector(T, N) as TupleLike { … }

impl [T:! Type] Vector(T, 1) as ImplicitAs(Scalar) { … }

fn F(v1: Vector(i32, 1), v2: Vector(i32, 1)) {

// OK?

// Do we consider v1 -> Scalar then use Scalar * (Vector(i32, 1) as TupleLike)?

let v3: Vector(i32, 1) = v1 * v2;

}

■ In C++, this would work if the operator* corresponding to the Mul impl
were found by ADL in the associated namespaces and classes of
Vector(i32, 1).

■ In Carbon, we might be saying that this works if that Mul impl is defined
with Vector(i32, 1); this seems like the equivalent of ADL.

○ Use case: I have an Coconut that I want to be able to use anywhere I can use a
Durian; in this situation we want there be an implicit conversion
Coconut->Durian defined with Coconut, and want the compiler to consider that
conversion anytime using values of type Coconut

■ fn F(d: Durian) should be callable with a Coconut
■ Durian implements Smelly, fn G[T:! Smelly](d: T), can we call G

with a Coconut? No: what if Coconut also implements an implicit
conversion to Ginkgo which also implements Smelly?

○ Idea: could have Compare(Int(N), Int(M)) for all N and M 1..256, but delegate
to a finite set of compare functions for N == M == 2^k, where the caller will do an
implicit conversion to the final type. Means that we allow generally interfaces to
implemented with functions that don't have the exact right signature, but can
accommodate the calling type via implicit conversions

○ Rule: always look up interface impls using the precise type

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 66 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Never find Apple + Banana when looking for Apple + Apple regardless
of where it is or if there's an implicit conversion

■ Can provide a generic Apple + T, for any T that converts to Banana, but
that can only live with Apple not with Banana by the normal coherence
rule

● This is the same constraint as the ADL approach would provide,
and the same behavior, but with implicit conversions made explicit

● impl [T:! ImplicitAs(Banana)] Apple as Addable(T)
■ Should these be ambiguous for Apple + Apple? (Should we have Apple

as ImplicitAs(Apple)?)
● impl [T:! ImplicitAs(Apple)] Apple as Addable(T)
● impl [T:! ImplicitAs(Apple)] T as Addable(Apple)

■ Other option is that there is no match for Apple + Apple
● Prefer ambiguity, and a blanket impl T as ImplicitAs(T).
● Since that allows you to pass Banana to something that takes

ImplicitAs(Banana)
○ Rule: you only ever apply an implicit conversion when you know the destination

type
■ Implicit conversions allowed in pattern matching and overloads

● Aside: overloaded function
○ Idea:

overloads {

same_specifiers fn SameName(...);

same_specifiers fn SameName(...);

}

○ private vs. public differences: problematic in C++ because you can't resolve
access until after overload resolution; can't do access checks as part of name
lookup

■ doesn't bother ChandlerC as much
○ aside: issue with C++ using declarations with inheritance wanting to add a

function with the same name as parent's overloaded function one of which is
private one is public

○ would be nice
○ Concern with not repeating name is forward declaration matches out of line

definition, josh11b likes:

overload SameName {

fn (... signature 1...) -> ret 1;

fn (... signature 2...) -> ret 2;

}

fn SameName(...signature 1...) -> ret 1 { ... }

fn SameName(...signature 2...) -> ret 2 { ... }

○ First match wins
○ If you want to override functions in an overload set in a derived class, have to

build a covering overload set in the derived class

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 67 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ no synthesis of an overload set combining functions from the base and
derived

○ Same deal in interfaces, impls have to cover all the overloads in the interface
○ josh11b: worried about evolution, trying to transition a virtual function to another

with the same name but different signature
■ tying the public name to the virtual name is awkward
■ recommendation to use private virtual and separate public non-virtual

interface
○ C++ design bug is the behavior of derived class hiding names in the base class
○ Another choice: derived class does not change overload set for a name defined in

in its base class
○ impl fn syntax in derived class doesn't change lookup for that name in derived

values, just lookup of names in the derived type, doesn't hide anything in the base
class

// Can only define overloads with a forward declaration

fn SameName = overload

(...signature 1...) -> ret 1,

(...signature 2...) -> ret 2;

○ [zygoloid] For me overload syntax comes down to: how closely connected do we
want overloads to be?

■ if these are implementing the same function / functionality, but just
providing different interfaces, *and* they can reasonably all be declared
together (rather than, say, declared with the type they operate on), then
any of the above overload syntaxes seems mostly OK (but the extra
indentation and disruption to the normal API flow seems somewhat
undesirable)

■ otherwise – for example, if you're grouping the API by type, and have one
overload per type, or if the overloads and their corresponding types aren't
all defined in the same api file – this syntax seems problematic.

○ our choice of syntax will influence people's design choices; what designs do we
want to encourage and discourage?

● Resume conversation about implicit conversions and impl lookup (motivated by binary
operators)

○ [zygoloid] For a type Apple, I want to be able to write a single impl that provides
all of these:

■ impl [T:! ImplicitAs(Apple)] Apple as Addable(T)
■ impl [T:! ImplicitAs(Apple)] T as Addable(Apple)
■ impl Apple as Addable(Apple)

○ … in which I only define the Add function once.
○ Idea: define a [structural?] interface:

// in the library

[structural] interface SymmetricAddable {

fn Add(x: Self, y: Self) -> Self;

impl [T:! ImplicitAs(Self)] Self as Addable(T) { alias Add =

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 68 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

SymmetricAddable.Add; }

impl [T:! ImplicitAs(Self)] T as Addable(Self) { alias Add =

SymmetricAddable.Add; }

impl Self as Addable(Self) { alias Add = SymmetricAddable.Add; }

}

// in Apple

impl Apple as SymmetricAddable {

fn Add(a: Apple. b: Apple) -> Apple { … }

}

○ [josh11b] What about?

fn AddApple(l: Apple, r: Apple) { ... }

impl Apple as Addable(Apple) {

let Add = AddApple;

}

impl [T:! ImplicitAs(Apple)] Apple as Addable(T) {

let Add = AddApple;

}

impl [T:! ImplicitAs(Apple)] T as Addable(Apple) {

let Add = AddApple;

}

○ [josh11b] Could potentially use where A != B constraints to remove ambiguity
■ Also useful for defining Compare(B, A) in terms of Compare(A, B) but

not when A == B.
● For interop with C++, need to support Compare interface for C++ classes that only

implement <, etc. and not <=>; Carbon types will always use the default implementations
of <, etc. in terms of a single Compare function equivalent to <=>.

○ Don't generally want Carbon types to have inconsistent sets of comparison
operators, don't care about accommodating EDSLs using those operators

○ Rust macro_rules approach transforms tokens into Rust code, instead of using
operator overloading to support EDSLs

○ So < always returns a Bool?
■ SIMD operators? SPMD instead
■ Boost lambda approach, expression templates? Nope

● Long talk about specialization
● Talk about #821: Values, variables, pointers, and references and comparison to C++
● Possible convention for returning values by reference, with the lifetime of the parameter

with the shortest lifetime

2021-09-09
● Attendees: geoffromer, josh11b
● Ptr doesn't allow magic const casts that C++ pointers allow

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/pull/821

Page 69 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

int** p = ...;

int const * const* allowed = p;

int * const* allowed2 = p;

int const ** illegal = p;

○ This is about both a type-system thing (these const casts are safe), and a
representation thing (the compiler can enforce that int* and int const* have
the same bit representation)

○ Only known fix right now is to make a special PtrVector<T> that acts like
vector<Ptr<T>> but is implemented in terms of vector<T*>, along with
corresponding view types

● Would Carbon have the same issues?
○ #821 has a very different take on const support
○ no way to have a per-instance let members in classes
○ Are we going to have the same situation as Java that has a proliferation of types

to represent immutable and mutable versions? And proactive copying of data
passed to an API to ensure that your copy is not changed.

●

2021-09-07
● Attendees: chandlerc, zygoloid, dhollman, geoffromer, josh11b
● [josh11b] anything to grease the wheels of figuring out keywords / spellings?

○ [chandlerc] Could use the painter approach more often
○ [chandlerc] The motivating example the keyword choice is load bearing: not just

choosing between things that are about equally acceptable
■ People have significant concerns about some choices

○ [chandlerc] No changes to the design are really bubbling to the surface as we
discussed keyword options. Concern was whether the difficulty choosing the
name meant that the design needs to be fixed, but now that we've focused the
facet as just a solution for ABCs can now just use a placeholder if necessary so
we can move on.

○ Random bystander thought of these as "partial base classes", may just use
partial since it has relatively few problems even if not much love

○ Kate liked "we don't have constructors", motivated this solution
○ [zygoloid] Making this about ABCs, decoupled this from .base = ... in the

derived constructor
○ [chandlerc] Concern was we were going to be talking about these a lot before we

restricted to ABCs, so this was an important piece of terminology not just a
keyword

● [josh11b] thoughts about https://matklad.github.io/2021/09/04/fast-rust-builds.html?
○ [chandlerc] Interesting when people dig in and analyze things; particularly the

strategy for generating code for generics
■ [chandlerc] the generated code for a generic is not done at the granularity

or location expected; it is not the crate that defines or uses the generic, it
is more like C++ template instantiation in that it is per use

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/pull/821
https://matklad.github.io/2021/09/04/fast-rust-builds.html

Page 70 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ [chandlerc] there are traits that are just generic around a type conversion,
after which the function is not generic; there is a now a crate that splits
the function into a generic conversion and a non-generic body

■ [chandlerc] Rust proc macros traditionally runs in a symbolic interpreter,
slow for running a Rust parser, can now compile the proc macro to WASM

■ D runs a JIT, Circle allows you to pull arbitrary system library in process
for running meta code -- e.g. curl to download a missing dependency

■ [chandlerc] Carbon should look for cut points after which a function is no
longer generic; momo supports three kinds of cut points, as_ref, into, and
one other. Maybe implicit conversions are happening in the generic
instead of being done in the caller.

■ [chandlerc] Large trade-off in how you generate code for generics
between putting code into the generic vs. putting code into the caller.

■ Is Rust doing any linkage based elimination of duplicate instantiations? Or
doing a lot of inlining in the caller so it can't?

■ 5x template deduplication typical for C++
■ [chandlerc] Rust should look at the tricks C++ uses to scale templates;

limits without language or library changes
■ [geoffromer] extern templates?

● [chandlerc] used infrequently but with high impact, e.g. in standard
library, protocol buffer compiler

● [zygoloid] inline's interactions with extern templates -- tried still
generating an instantiation for each caller for inlining, but it gets
thrown away if not used -- but massive space regression

● [chandlerc] Not duplicating code is not always a win due to less
inlining; strategy can work in debug builds

● In C++, no way make use of an analysis of a function that
determines if it will always or never

● Compilation model?
○ Do we have one compiler invocation per file, or one per library? Per file.
○ Do we have a step that packages the components of a library together?
○ [chandlerc] Rationale: easiest to teach to humans and build systems mechanism

for parallelization is at the file level granularity
○ [zygoloid] Want to reduce rebuilding if something distant changes; can we copy

from dependencies to allow us to detect changes that don't matter to transitive
deps

■ Goal is the compiled form of B that depends on A, includes all the
information for all Cs that depend on B

■ Can we measure what percentage of A that is exposed by B as heuristic
to decide whether to copy A into B?

■ Concern is greatly increasing size due to duplication-- is every file going to
duplicate some common libraries like string?

○ Alternative has scalability concerns
■ One concern is staleness information
■ One alternative is hashing your dependency, to prune downstream

changes

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 71 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Question:
C depends on B depends on A
B is not affected by changes to A, and doesn't change B's interface
How do we decide that we don't need to rebuild C?

■ The input files to C's compilation is different than the set of files checked
to decide if C needs to be rebuilt

■ If we had a content-addressable-database of build artifacts, could
re-export everything B depend on in A just by exporting hashes of the
things used from A

■ A could precompute hashes for a fine granularity of its output
● Could use the Merkle tree optimization then

■ Could use duplication to verify that the hash is correct
■ Deduplication falls out of using hashes
■ Can optimize the fetch of C's needs from A using the hashes; but worry

that the size might be smaller than hash
■ Use hashes instead of mangled names
■ Potential optimizations (particularly for local builds) to avoid recompiling

C based on what it used from B being listed in C's output
● distributed builds are probably more concerned about transfer

costs, don't necessarily have the previous output available
● local builds, the tests are for things that are hot in caches

2021-08-30
● Attendees: jonmeow, josh11b, chandlerc
● Discussed options in Extensible classes

○ Leaning toward the more C++ options, possibly just C++ with the modification
that you have to say unsafe_delete to delete an Extensible* without a virtual
destructor.

○ Could revisit when we have less time pressure and more data.
● #741 constructors

○ Three most viable options:
■ factory/construct
■ regular functions with no additional safety beyond C++, but need

something for abstract classes
● possibly a keyword both as the return type and and the call site

when constructing an abstract base class
● can call virtual functions on the base object before it is returned,

get the vtable from the base object
■ regular functions with a weird type for extra safety

○ Three possible goals:
■ regular functions instead of special constructors
■ no performance cost from reinit vptr
■ safety advantage of virtual calls not being possible when they aren't as

meaningful

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://en.wikipedia.org/wiki/Merkle_tree
https://docs.google.com/document/d/1gbQJN_IMJBnquOUUd2orbHLlAIqZ4pL0Vt7h34DkQjg/edit?resourcekey=0-0lkEvh0umUU206ASFlWc7A#
https://github.com/carbon-language/carbon-lang/issues/741

Page 72 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Deciding that first goal is the most important
■ expert users that very much care about performance can avoid re-initing

by using the keyword
■ still will prevent virtual calls in abstract base classes, eliminating pure

virtual function calls
○ Still some performance concerns if the class is inheriting from lots of interfaces,

but that is expected to be rare
○ Maybe people who were very safety focussed would provide two versions of the

constructor functions
○ Would good to be have a default way of converting certain kinds of argument

lists to a type -- like list of vector elements to a vector
■ model that as a conversion

○ Rule: wherever in C++ you would use an explicit constructor, use a named factory
function instead; wherever in C++ you would use an implicit constructor, use a
conversion function

■ Carbon will use interfaces to support making conversions bidirectional
more easily

○ Could call this the concrete version of an abstract class, wasn't a big hit
○ Would we use this variant type for both constructors and destructors?

● Destructors?
○ classes all need them, though a default can sometimes work
○ no arguments, but can be virtual or not
○ some classes want customized code that is run when they are deallocated, which

might have parameters passed to it
○ in contrast, being destroyed is implicit, no arguments
○ Rust called this "drop" but it was a mistake to be different, should call them

"destructors"
○ Are destructors implemented via an interface, or they are an intrinsic part of the

class
○ implementing an interface is a bit verbose

■ maybe we want a way to make a special case for single-function
interface?

■ better would be to have a shorthand for implementing an interface with a
single function -- maybe impl fn MyInterface.MemberFunction... {
... }

○ private destructors? would we need to express the capability to destroy as a
generic constraint, which leans towards interfaces

○ what behavior do you get if you don't implement the interface? private destructor
or default destructor

○ what about getting the default destructor when you want to make it virtual?
○ private destructors are rare, comparable to being unsized

■ classes should implement these traits automatically, have an opt-out
■ could have some syntactic sugar for the obvious customizations when

you want to opt-out
○ having a special keyword for the destructor doesn't bother Chandler

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 73 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ previously said we don't want to support destructors failing, have to deal with
possible failures before destruction

○ what if we allow you to have a return type for your destructor, but when it isn't
void the destructor cannot be implicitly called

■ requires you to explicitly call the destructor (and handle its return type
potentially) prior to the end of lifetime

■ doing so puts the object into an unformed state (and so you have to have
an unformed state)

● this is a bit recursive -- if you have an unformed state we're
allowed to run the destructor on it?

● require the unformed state to not be one that will fail?
● Or not unformed, could just end the lifetime of the object

■ These destructors would have to be named, you could have two different
ways of destroying the object

● Really, these are an alternative to a destructor
● class MyClass { fn MyDestroyer[destroy me: Self](...)

-> ... { ... } }
■ Keep this in mind, but don't need to implement it now
■ Part of the error-handling story, when we tackle that

○ Do we want to allow calling virtual functions in destructors at all?
■ ability to call virtual functions in destructors creates a data race in the

C++ language that can't be avoided, since write to vptr is unsynchronized
■ could potentially avoid this by requiring destructors with synchronizing

calls to be final, since we could avoid the initial vtable assignment
■ TSAN works around this by detecting whether the vtable assignment is to

the same value when there is synchronization
■ Not a lot of value in calling virtual functions when you won't be getting the

derived version
● Maybe calling a base class function that turns around and calls a

virtual method?
● Not that useful, but preventing it might be hard

■ Could just null the vptr on the way in, but it will break synchronization in a
destructor

● good case for final, since deriving from a class that does
synchronization is unlikely to be sensible

■ Seems most sensible only in most derived type, so tempting to only allow
it in final classes

● but still may want to put common destructor code, including
synchronization, in a base class helper function, which may turn
around and call a virtual function

■ Maybe we just zero the vptr when we get to an abstract base class'
destructor, a la a partial type, and fix the race condition by fixing the ABI

● it isn't the destructor that sets the vptr for itself, the destructor will
set it to the base class' at the end

● don't have to worry about C++ ABI issues around virtual base
classes

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 74 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ Syntax: [private] [virtual] destructor(; | { ... })
● there will be some other thing going on with interfaces

■ Do we want to support undestroyable things? Eternal objects that are
never destroyed? Probably not worth spending effort on this now

● private interface implementations?
○ context sensitivity vs. access control facets
○ context sensitivity awkward when forwarding to an interface
○ for now could just say: if you have a public destructor, you automatically

implement the destroy interface
○ could just restrict construction instead of destruction
○ case where you construct something and hand it off to some other function that

should not delete
■ really that is about not transferring ownership when you pass a pointer
■ want something more restricted than a C++ pointer, possibly by changing

the ownership semantics of pointers
■ a difference between an owning and unowning pointer, like C++'s

unique_ptr
■ default pointer is non-owning

○ For now, no access control on destructors; syntax:
[virtual] destructor(; | { ... })

● Do we want to insist that you introduce a class with abstract functions using the abstract
keyword?

○ Stronger than in the current proposal
○ Puts very important information up front for readers
○ Changing a type from extensible to abstract is a radical change, will probably

update the comment, rename it, etc.
○ Don't need to say "protected destructor", just make it abstract

● If base class defines the destructor as virtual:
○ need either virtual or impl on destructor in derived? or use the same rule as

methods?
○ simpler to match methods -- even though it makes evolution a little trickier, and

destructors don't have the same overload-matching issues
● We will allow you to construct extensible objects with non-virtual destructors
● Will need to expand #652 to cover all the extensible object issues
● #780 on constraints

○ Chandler prefers "whole expression constraint intersections" over "per-interface
inputs"

○ Want to understand about a type, can find everything about it by looking at the
declaration of that type and recursing into things that are mentioned

○ Chandler's biggest problem with constraining inputs is syntactic; the passing in
syntax itself, too similar to parameterizing

■ maybe pretty rare to do both
■ likes both where syntaxes, thinks they are clear

○ leaning towards just where type expression
■ restricted
■ affects api

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://github.com/carbon-language/carbon-lang/issues/652
https://github.com/carbon-language/carbon-lang/issues/780

Page 75 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ allow .X on either side of the ==
■ can also have arbitrary type expressions
■ for recursive constraints: .Self refers to Self in the interface's scope
■ implies MyInterface actually has a member named Self that is created

automatically -- as much as any other associated type of MyInterface
■ later may need to use a separate keyword on declarations (requires?)
■ want the where to only affect the API of the type it is modifying,

fn F[T:! Type, U:! Container where .Element is Comparable, .Element = T](u: U);

gets rewritten to

fn F[_1:! Comparable, let T:! Type = _1, U:! Container{.Element = _1}](u: U);

○ Question: how does this interact with templates?

2021-08-26
● Attendees: chandlerc, josh11b, zygoloid, mconst
● Non-abstract extendable types

○ We have some operations that we either never want to perform on these
extendable types, like slicing style assignments, or only want to perform under
certain criteria like for local variables.

○ Natural to separate the types: sometimes you have a type that has the
constraints that allow operations, sometimes you have a different type without
those restrictions but can't perform all the operations.

○ Concerns are:
■ C++ legacy (not the primary concern)
■ needing to use 2 different types
■ awkward code changes as use cases evolve

○ Having more types is expensive for humans, cognitively
○ How would we do this without types? We should separate out these operations

into distinct operations.
■ For example, separate operations for static and dynamic destruction
■ Rather than having two different types that have a difference of whether

they support a single operation.
■

○ Want to preserve the out that if extendable types have limitations you can always
switch to just using final types

○ [zygoloid] maybe these are type-of-types... and when we use an extensible type
as a type, it is an *exact* type. When we use it as a pointer, it is type-or-derived.

■ Basically Base as Type is an exact type, and Base as InexactType is
what Base* uses to enable pointing to derived types.

■ <lots of discussion seeming to like this>
■ one concern is conversions...
■ Basically, this gives us two pointer types -- which we avoided in the past

because it risks an explosion of generics parameterized on pointers.

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 76 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

somewhat a question of -- can we minimize that / avoid that enough to be
successful?

○ [mconst] pushing back towards making the distinction between the class type
rather than the pointer type

■ maybe we can make this look similar enough to the type-of-type
approach?

■ but keep the difference in the class type rather than the pointer type
■ seems nicely promising in most ways
■ but postfix star on types isn't injective...

let T:! Type = Base;

var v: T*;

■ but now T* always means T-or-derived for non-final T. tolerable.
■ but how can we define things on extensible classes that are only available

when we have the exact type?
■ unclear we care -- opinions differ...
■

● [speaker] Comments
○ More comments

2021-08-23
● Attendees: chandlerc, dhollman, zygoloid, jonmeow, josh11b
● Decision: alias X = Y
● Discussion on virtual, override, pure virtual

○ We don't like the = 0 suffix (or = pure), since it is in place of an implementation
but we wouldn't put it out of line like an implementation. So should put it
wherever we are saying virtual, etc.

○ Want to match C++ keywords when semantics match, argues for virtual over
other choices

○ Concern: evolution from a base class to an interface, which you can still derive
from

■ overriding a virtual function from a direct or indirect base class compared
to implementing a method in an interface that you directly or indirectly
derive from

■ conclusion: the intrusive dyn-ptr case should use the inheritance syntax;
deriving from an interface gives you pure-virtual methods

○ What does Self mean? In an interface it means the type implementing the
interface, in a virtual method, is it the lexically enclosing class or the most
derived class? To match C++, we probably want the lexically enclosing class.

○ When we derive from an interface, we first convert the interface into a base class
(an "interface class"), the Self in the methods of that interface base class refers
to the interface base class

○ Do we have a use case for final methods?
○ Case: defining a function as pure virtual and implementing it

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html

Page 77 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

■ e.g. the destructor, to make the class abstract even though every method
is implemented

■ also to provide an implementation in the base class but still require
descendants to implement it -- better to just use a protected helper
method

○ Maybe virtual is the default in interfaces and final is the default in classes
■ Problem: interfaces may use static dispatch, mismatch with virtual

○ Josh demands a decision: abstract wins over pure virtual
■ Still talk about "abstract virtual functions", but "abstract" on its own serves

as clear indicator, unlike "pure" without "virtual"
○ Three use cases

■ I'm providing an extension point, you must implement
■ I'm providing an implementation, you may override
■ I'm providing an extension point, but there is a default
■ Last two use cases are different but both get virtual
■ Last use case might be replaced by a helper function and a pure virtual,

needs a cheap way of saying "implement this with that"
○ Question: use override in the same position as virtual

■ concern: overriding an abstract function isn't really "overriding"
■ could also use impl fn ..., consistent with implementing interfaces

○ josh11b and zygoloid agree we want mandatory syntax; chandlerc points out that
we can instead forbid overloading in this case

○ impl fn would never change the names in the class
○ Question: would you allow impl fn out of line, without a declaration in the class?

■ No: problem if it is abstract in the base, does an intermediate class
implement it so a final class doesn't?

○ Do out-of-line definitions need to carry private? Similar to the impl question.
○ Decided : impl fn instead of override fn

● ctor, under_construction, partial, construction
○ Make it an error if you use the keyword with a final class
○ Argued against base again
○ josh11b: construction by fiat, will likely need to be revisited since we clearly

don't have agreement
● "Three thumbs up" or "lead's judgement"? Leaning toward lead's judgement
● Do we need final for methods?

○ Can be dropped without breaking code
○ Get similar performance benefits from profile guided optimizations and

devirtualization
○ Could imagine using final to mean "no shadow"
○ Wait and see if it is useful for Carbon programmers, won't include final for now

● Discussed upcoming leads question on constraints
○ Fixed some bugs in restricted where approach
○ Considered constraint that expand into cyclic references
○ Do we want to allow forward declaration of interfaces, to allow cyclic reference

between them?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://docs.google.com/document/d/1e0urd_nne6jhuTlG5uHD705VXjJkUeW9e8SfrIeEMYg/edit#

Page 78 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ Worked an extended example using graphs, edges, and vertices to work out ways
to work around limitations

○ Possibly where clauses change type but not API, a bit like external impl
○ Do constraints reach into interfaces to change types or just allow casts?

2021-08-16
● Attendees: chandlerc, josh11b, mconst
● Talking about Carbon: inheritance

○ default of "final" for classes is scary but likely doable; definitely needs a rationale
● [chandlerc] I have terrible ideas about placement of virtual keywords

base class MyBaseClass {

virtual {

fn Overridable[me: Self]() -> i32;

fn MyPureMethod[me: Self]() -> f32;

}

fn Overridable[me: Self]() -> i32 { return 7; }

}

● [chandlerc] This virtual block works the same way as an interface
● Could we make default methods of interfaces work like virtual method implementations?
● Restrictions here would be the same as "object-safe" restrictions on interfaces
● Could use final in an interface to represent non-virtual methods in an abstract base

class
● Block approach helps optimize for the two different readers of the class
● Another place where block approach can help is for modeling override:

base class MiddleDerived extends MyBaseClass {

// Lots of introducers available, such as override MyBaseClass etc.

impl as ??? MyBaseClass {

virtual fn Overridable[me: Self]() -> i32;

virtual fn MyPureMethod[me: Self]() -> f32;

}

virtual fn NewOverridable[me: Self]() -> i32;

}

● Question: assigning from a struct value that does not specify all of the fields to a
nominal class. See context.

○ Breaks assignment using a blanket implicit conversion from struct values.
○ Is this actually a foot gun? Maybe a lint rule? Maybe a lint rule only later if it

proves to be an issue?
○ Do we actually want to allow implicit conversion from struct type values to

nominal classes in assignment at all?

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://docs.google.com/document/d/1QueRW-GdY294h1YPLTLz6MzVb0hG9VdJf5Ql35B6Y2E/edit#
https://github.com/carbon-language/carbon-lang/pull/722/files#diff-f73ddb40202d18c85ee2c5948053b696860157520dc9d90d3df4fb3cdacd359aR775

Page 79 of 79

Part of the Carbon Language, under the Apache License v2.0 with LLVM Exceptions.
SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception

○ In C++ variable initialization is very different from passing something to a
function. Can disable implicit conversion in C++, by deleting a templated
conversion. Two categories of implicit conversion in C++, a conversion operator
can be marked explicit -- which just disables some conversions in some
contexts.

● Question: should we allow unqualified name lookup, or should all names in methods be
qualified?

Archive
● Jan-Aug 2021

https://carbon-lang.dev/LICENSE
https://spdx.org/licenses/Apache-2.0.html
https://spdx.org/licenses/LLVM-exception.html
https://docs.google.com/document/d/1TvHK6HWAcCtnseMpcNsLYrgdtNy9qNrv6EaY9n063ok/edit

