Haskell Foundation Technical Task
Force (Slot 1)

March 17, 2021

Attendees
e Ben Gamari
e Davean

e Michael Snoyman

Potential for split-base

e Discussed the possibilities of decoupling base and GHC
e Ben listed some of the interdependencies between GHC and base
o E.g. Foldable/Traversable/Generic deriving, list type
o Should mostly be possible to move these things to ghc-prim (or ghc-base)
e Davean: taking this kind of approach will force people to upgrade to a new GHC before
getting the benefits
e Michael: What problem are we trying to solve?
o Ben
Future proof us against future changes to GHC
Shield users who aren’t ready to update
Goal here isn’t actually to split up base
Want to make it that people aren’t directly importing a package that is tied
into the GHC release cycle

o Davean has heard people saying they want to fold Vector and containers into
base. Maybe should handle via reexports to get the batteries included
experience.

o Michael: we're at a local optimum, lots of the things we’re looking at (split base,
reinstallable base, reexports, etc) are workarounds to deal with the pain of a
transition period

Ben: can we start on a repo to start trying out these ideas?

Michael: let’s create an std (bikeshed name), export types, and then include patched
versions of bytestring, text, vector, etc that reuse that type

Michael: we can put an explicit stream fusion layer into std

Ben: we can keep a compatibility shim in the bytestring/text/vector packages doing
implicit stream fusion, and the new code won'’t use it



Vector: unifying unboxed and boxed

Ben: aren’t we concerned about performance degradation?
Michael: (1) if we can guarantee that it selects unboxed reliably and (2) we should
expose a PrimVector to allow users to be completely explicit

e Ben: this will require some kind of closed type family + no orphans. One flavour would be
a flavour of typeclass which explicitly prohibited orphan instances and a closed type
family which allows the user to determine whether a given instance is in scope. E.g.
WithInstance :: Constraint -> Maybe Constraint. The argument must be headed
(syntactically?) by one of these special “always coherent” typeclasses (yuck).
Davean: need to be certain that this doesn’t kill compile time performance
Ben: the coherence issue is tricky



	Haskell Foundation Technical Task Force (Slot 1) 
	Attendees 
	Potential for split-base 
	Vector: unifying unboxed and boxed 

