
Haskell Foundation Technical Task 
Force (Slot 1) 
March 17, 2021 

Attendees 
●​ Ben Gamari 
●​ Davean 
●​ Michael Snoyman 

Potential for split-base 
●​ Discussed the possibilities of decoupling base and GHC 
●​ Ben listed some of the interdependencies between GHC and base 

○​ E.g. Foldable/Traversable/Generic deriving, list type 
○​ Should mostly be possible to move these things to ghc-prim (or ghc-base) 

●​ Davean: taking this kind of approach will force people to upgrade to a new GHC before 
getting the benefits 

●​ Michael: What problem are we trying to solve? 
○​ Ben 

■​ Future proof us against future changes to GHC 
■​ Shield users who aren’t ready to update 
■​ Goal here isn’t actually to split up base 
■​ Want to make it that people aren’t directly importing a package that is tied 

into the GHC release cycle 
○​ Davean has heard people saying they want to fold Vector and containers into 

base. Maybe should handle via reexports to get the batteries included 
experience. 

○​ Michael: we’re at a local optimum, lots of the things we’re looking at (split base, 
reinstallable base, reexports, etc) are workarounds to deal with the pain of a 
transition period 

●​ Ben: can we start on a repo to start trying out these ideas? 
●​ Michael: let’s create an std (bikeshed name), export types, and then include patched 

versions of bytestring, text, vector, etc that reuse that type 
●​ Michael: we can put an explicit stream fusion layer into std 
●​ Ben: we can keep a compatibility shim in the bytestring/text/vector packages doing 

implicit stream fusion, and the new code won’t use it 



Vector: unifying unboxed and boxed 
●​ Ben: aren’t we concerned about performance degradation? 
●​ Michael: (1) if we can guarantee that it selects unboxed reliably and (2) we should 

expose a PrimVector to allow users to be completely explicit 
●​ Ben: this will require some kind of closed type family + no orphans. One flavour would be 

a flavour of typeclass which explicitly prohibited orphan instances and a closed type 
family which allows the user to determine whether a given instance is in scope. E.g. 
WithInstance :: Constraint -> Maybe Constraint. The argument must be headed 
(syntactically?) by one of these special “always coherent” typeclasses (yuck). 

●​ Davean: need to be certain that this doesn’t kill compile time performance 
●​ Ben: the coherence issue is tricky 

 


	Haskell Foundation Technical Task Force (Slot 1) 
	Attendees 
	Potential for split-base 
	Vector: unifying unboxed and boxed 

