
PropDAQ Firmware

Table Of Contents
Table Of Contents
Introduction
Functionality
Overall Architecture
Propeller Specific Hardware
Functions Implementation

Serial Communication Interface
ADC Communication
PWM Analog Output

Introduction
This describes the firmware (software) developed for the Propeller MCU used in our
PropDAQ-Module. It provides the necessary communication with the PC through our
“PropMeter PC Data Acquisition Software”, and control the various input and output signals.

Functionality
The PropDAQ Firmware needs to provide the following functionality:

● Communication link with PC
● Read Analog Input values (QTY=4)

This is accomplished by communicating with the ADC chip MCP3204 from Microchip.
● Read Digital Input (QTY=4) (reading state of pins)
● Setting state of Digital Output (QTY=4) (setting output state of pins)
● Setting value of Analog Output (QTY=2)

https://docs.google.com/document/d/1QI0ofl7S3d3VuJ72kFq0clVJtzS7rZI2hqoIYNlMnz8/edit#heading=h.cv4z7bsv9mq
https://docs.google.com/document/d/1tAC28d2xkhj3xCAXNvaHpZP0CeF16Fupp2qNg6nJFkA/edit#
https://docs.google.com/file/d/0B2qgKq6Cs0jXQy1UZjJBclh2ams/edit

Propeller Specific Hardware
The Propeller chip has 8 Cogs which can operate simultaneously, either independently or
cooperatively, sharing common resources through a central hub. The developer has full control
over how and when each cog is employed; there is no compiler-driven or operating
system-driven splitting of tasks among multiple cogs. A shared system clock keeps each cog on
the same time reference, allowing for true deterministic timing and synchronization.

For optimum speed, we have elected to run each PWM Analog Output in a dedicated Cog (we
have developed our own PWM object in Prop Assembly that can run at more than 20kHz). For
the same reason, we have also elected to run the ADC communication in a dedicated Cog, and
the same for the PC communication protocol. As it is, the Cogs usage is as follows:

1. cog 0 - initial boot-up
2. main program
3. PC com
4. ADC read (Analog Inputs)
5. DI / DO
6. PWM Analog Output 0 (AO-0)
7. PWM Analog Output 1 (AO-1)
8. NA

https://docs.google.com/file/d/0B2qgKq6Cs0jXMlN3Wk5FYUQtZU0/edit

For the digital Inputs or Outputs, the Propeller chip has 32 I/O pins. QTY=2 are used for serial
communication with PC, QTY=2 for EEPROM reading, QTY=3 pins for ADC reading Analog
Inputs, QTY=2 for PWM Analog Outputs, QTY=4 for Digital Inputs and QTY=4 for Digital
Outputs. The pin assignment is as follow:

● P31 (pin 38) - RX (receive from PC)
● P30 (pin 37) - TX (transmits to PC)
● P29 (pin 36) - EEPROM SDA
● P28 (pin 35) - EEPROM SCL
● P2 (pin 43) - PWM AO-0
● P3 (pin 44) - PWM AO-1
● P4 (pin 1) - ADC Csn
● P5 (pin 2) - ADC DI-DO
● P6 (pin 3) - ADC SCLK
● P16 (pin 19) - DO-0
● P17 (pin 20) - DO-1
● P18 (pin 21) - DO-2
● P19 (pin 22) - DO-3
● P20 (pin 23) - DI-0
● P21 (pin 24) - DI-1
● P22 (pin 25) - DI-2
● P23 (pin 26) - DI-3

Overall Architecture
The overall functionality of the firmware is organized around a main perpetual loop defined in
the PropDAQ-PWM.spin file. The functionality of this loop is illustrated below.

Block diagram illustrating the functionality of the main loop.

The actual code is written in Propeller Spin and Propeller Assembly language in four different
program files:

● PropDAQ-PWM.spin
Contains the Main control loop.

Includes the following objects
Msg : "Messager"
Stk : "Stack Length"
pwm1 : "AsmPwm"
pwm2 : "AsmPwm"

Defines commands
NameTable byte

"version",0,"model",0,"nchannels",0,"push",0,"set",0,"start",0,"stop",0,"dir",0,"type",0

Starts the various Cogs

pwm1.start(%010, 1015)
pwm1.changePwmAsm(000)
pwm2.start(%001, 1015)
pwm2.changePwmAsm(000)
ADCCOG:=cognew(@DACLoop, 0)+1 ' start ADC
DIGCOG:=cognew(@DigitalLoop, 0)+1 ' start Digital Cog
RDCOG:= cognew(ReadLoop, @Stack)+1 ' start readloop

‘ This starts the ReadLoop in a new cog.
Contains the Assembly code for DigitalLoop and DACLoop

pub ReadLoop | n, m, mask, curVal, curTime, pushed, ldbg1, ldbg2, ldbg3, ldbg4, duty, inc
duty:=0
inc:=1

repeat ‘main loop
Msg.checkKeys ' check buffer
Msg.checkTimeout ' check timeouts

if not ina & btnMask and not pushed ' check push-button
pushed~~
Msg.sendKey(String("push"),4,@ExData,0,1)

if pushed and ina & btnMask
pushed~

repeat until not lockSet(LockID)

n:=0
mask:=1

repeat nAnalogI Send Analog Values if needed
if lastVal[n]

sendVal(tstamp[n], n, lastVal[n]&$FFFF)
lastVal[n]:=0

n++
mask<<=1

lockClr(LockID)

curVal:=DigIn~
if curVal Send Digital Values if needed

sendDig(cnt,curVal&$7FFFFFFF)

● Messager.spin
Defines the methods to send, retrieve and interpret messages to and from PC.
Makes use of the Queue buffer.
Specifies BAUD rate value.
Instantiates 8 different “Queue”

obj
Com : "FullDuplexSerial_rr004"
Q : "Queue"
Name : "Queue"
Val : "Queue"
Tmp : "Queue"
Tmp2 : "Queue"
Waiting : "Queue"
WaitingMsg : "Queue"
eIDQ : "Queue"

pub checkKeys
if Read > 0 '(reads in the RxBuffer from Ser. Com)
Parse ' parses the buffer for keys.

pub Parse | beg,end,numChars,c,state, exec, m, n, msgsum

{{ Parses the buffer for keys. }}

pub main
ComCog:=Com.Start(31,30,%0000,BAUD)
if ComCog== 0
repeat
Com.str(String ("MCOG:"))
Com.dec(ComCog)
return 0
repeat
Com.str(String (" BadDownload "))

pub Start(callbackaddr, nametableaddr, nkeys)

● Queue.spin
Defines the functions for a rotating Queue buffer.

● AsmPwm.spin
Defines functions to manage, update and generate PWM Analog Output.
Contains the Assembly code to generate the PWM.

loop ' main pwm loop
mov T, onT wz '1 instruction = 4 cycles
or outa, Mask '1

:on if_nz djnz T, #:on '2

mov T, offT wz
andn outa, Mask

:off if_nz djnz T, #:off

rdlong Change, pChange wz
if_nz call #reload

jmp #loop

Functions Implementation
This section describes how the main functions of the Propeller are implemented.

PC Communication
The communication between the device and the host PC is established through a USB link
using the FT232RL USB to serial UART interface chip, which essentially translates the USB
communication protocol into a classic 2-wires serial communication protocol and vice-versa.
When connected to the PC, the PropDAQ will be recognised by the PC as a FTDI
USB-to-serial-converter.

The communication protocol between the Propeller and an external computer is described in
our PC Data Acquisition document. In short, every piece of information is wrapped in small
packets in both directions. Each packet is structured like so:

<name:values> or <name>
where name is any arrangement of ASCII characters [excluding <:[!]>]

The following “names” or “commands” have been defined:

● version
<version> Returns the version number of current firmware

● model
<model> Returns the model number of current hardware (not used yet)

● nchannels
<nchannels> Returns the total number of all channels (A/D/I/O)

● push
<push> Identifies that the push-button has been activated (may become obsolete)

● set
<set:#channel,value> Set the parameter value for the channel specified. Used to set
sampling rate of AI or level (duty-factor) of AO (PWM).

● start
<start:#channel> Start acquisition of specified channel

● stop
<stop:#channel> Stop acquisition of specified channel

● dir
<dir:#channel, value> Set the direction (0 input, 1 output) of specified digital channel
Alternate: <dir:00000000> The 8-bit is used as a bit-mask to specify the direction of all
digital channels at once.

https://docs.google.com/file/d/0B2qgKq6Cs0jXYl9RdTVHYnlEaFE/edit
https://docs.google.com/document/d/1tAC28d2xkhj3xCAXNvaHpZP0CeF16Fupp2qNg6nJFkA/edit#heading=h.sp8dxbfg95wk

● type

#channel refers to the channel number, from 0 to 13. The channels are as follow:
0 AI-0
1 AI-1
2 AI-2
3 AI-3
4 AO-0
5 AO-1
6 DI-0
7 DI-1
8 DI-2
9 DI-3
10 DO-0
11 DO-1
12 DO-2
13 DO-3

The communication speed is set at 115200 BAUDS, which is the maximum speed that the
Propeller can handle with the FT232R chip.

ADC Communication
The second critical function is to read the value from the ADC chip. We are using the MCP3204
chip. The critical feature is the serial interface timing protocol form the ADC, illustrated below.

Serial interface timing from MCP3204.

The MCP3204 is a 12-bit ADC capable of conversion rates of up to 100 ksps. Clock frequency
can be up to 2.0MHz under 5V, and minimum Clock-High and Clock-Low time is 250 nsec each.
The effective clock frequency needs to be at least 10 kHz to avoid linearity errors into the

https://docs.google.com/file/d/0B2qgKq6Cs0jXQy1UZjJBclh2ams/edit

conversion.

We first tested an object shared on a forum. It worked well, but could not be incorporated into
our larger program due to conflicts between spin and assembly code.

We have developed our own Propeller code to read the values from the MCP3204 ADC chip.
The code was written using Propeller Assembly language and a dedicated Cog. We can read
values at a rate of approximately 55 kSample/sec (about 18-microsecond between samples).

The picture below illustrates our proto board with a Propeller chip and a MCP3204 chip. A
simple potentiometer was used to send a variable voltage signal to one of the input channel of
the MCP3204 chip.

Picture of set-up with Propeller Proto Board and a MCP3204 connected to a simple
potentiometer on CH0.

https://docs.google.com/file/d/0B2qgKq6Cs0jXQy1UZjJBclh2ams/edit
https://docs.google.com/file/d/0B2qgKq6Cs0jXQy1UZjJBclh2ams/edit
https://docs.google.com/file/d/0B2qgKq6Cs0jXQy1UZjJBclh2ams/edit

Schematic of Propeller Proto Board, with notes for connecting to MCP3204 and potentiometer.

ADC Testing

.
Oscilloscope traces of CS signal to MCP3204 (green) and DO signal to Propeller (yellow).
Duration between consecutive falling edges of the green signal (time between successive
samples) is about 18-microsecond, corresponding to a sampling rate of 55,555 samples per
seconds, or about 55 ksps.

PWM Analog Output
We have developed our own code to provide a PWM output on one pin. The code was written
using Propeller Assembly language and a dedicated Cog.

