

Proposal: Rocket.Chat ReactJS fullstack Component
Create a ready-to-go easy to embed mini-chat React
component.

Google Summer of Code 2022

About Me

Name: ​ ​ Sidharth Mohanty

Rocket.Chat:​ ​ sidharth.mohanty

Email:​ ​ ​ sidmohanty11@gmail.com

GitHub: ​ ​ sidmohanty11

LinkedIn: ​ ​ sidmohanty11

Website: ​ ​ https://sidmohanty11.github.io/

Country: ​ ​ India

Phone Number: ​ +91 9438277475

Time zone: ​ UTC +5:30 (IST - India)

Pincode: ​ ​ 753012

Abstract

The ultimate goal of the project is to create a full-stack React component
node module of the RocketChat application that would be fully
configurable, extensible, and flexible for use. It could be easily installed in
React-based applications.

1

https://open.rocket.chat/direct/sidharth.mohanty
mailto:sidmohanty11@gmail.com
https://github.com/sidmohanty11
https://www.linkedin.com/in/sidmohanty11/
https://sidmohanty11.github.io/

Benefits to the Community
It has been more than 7 years and we are still counting, RocketChat has proved to serve
over 12 million users in over 150 countries. It has now become the go-to open-source chat
solution for many organizations. With that said, when it comes to integrating RocketChat
into their applications it is a little painful setup and with the iframe solution also we can see
UI leaks which isn’t a good experience for users. So, with this full-stack RocketChat
component, I aim to solve this issue which will make it ever so simple to integrate
RocketChat into their applications.

React has become the most popular front-end framework of choice. Be it a startup or an
organization, everyone prefers to use react in most cases. For that reason, I think it just
makes sense to create a React.js mini-chat component that can be useful for a large
number of RocketChat users.

This will be a simple and effective solution for anyone who is planning to have a chat
solution in their application. With this RocketChat component, they can get started right
away. For instance, if someone plans to make a chat solution for their application, it is more
likely that it will take years to build a robust chat app (keeping in mind that it must be
real-time, handle efficient database requests and provide a sturdy server which can scale).
This ensures organizations use their valuable time building their product and leave
RocketChat with the stress to provide them with a powerful chatting solution.

The RocketChat component, in my opinion, will skyrocket in downloads due to its easily
configurable architecture and it will simultaneously increase users of RocketChat as it is a
two-way binding (RocketChat component being closely attached to the RocketChat
environment). This will provide a standard community discussion environment, increase
user engagement, service provider communications, marketplace communications,
communities that need to educate their clients and assist them with their product usage,
etc.

Goals
During the GSoC period, I would be focused on:

1.​ Making a ready-to-use react mini-chat component that can be installed in any
React-based web application through the npm registry.

2.​ Making this component configurable and giving flexibility to users to choose from.
3.​ Integrating real-time chat functionality using the RocketChat-SDK.
4.​ Integrating native RocketChat functionalities like pinning messages,

announcements, reacting to messages, sending emojis, etc.
5.​ Making the component fully responsive for both large and smaller screens.
6.​ Providing a native RocketChat feel to the component by using RocketChat’s Fuselage

design system.
7.​ Documenting and writing tests for the component.

2

https://rocket.chat/blog/adding-a-chat-room-to-your-webapp
https://reactjs.org/
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-web-frameworks

8.​ Publishing the end product to the npm registry.

Deliverables
By the end of my GSoC period, I plan to deliver an npm ReactJS library module
of RocketChat with the following features:

1.​ Creation of UI using RocketChat Fuselage design system. [NEW]
2.​ Providing real-time chat functionality using RocketChat node.js SDK. [NEW]
3.​ Authentication using RocketChat’s Google SSO with an additional choice for

<username, password> login (if the user already has an account). [NEW]
4.​ Adding EmojiOne Emoji Picker to the component to ensure cross-platform

functioning of emojis.[NEW]
5.​ Using Rocket.Chat’s REST API to: [NEW]

●​ Get channel details
●​ Get the channel’s pinned messages
●​ Get the channel’s starred messages
●​ Get the channel attachments
●​ Send a message to the channel
●​ Get messages of the channel

6.​ Providing the functionality to pin/star/react to any message and mention users.
[NEW]

Extras
The following are the improvements/features that I plan to build within the GSoC period if I
finish before my planned schedule, and if not then definitely after the GSoC period
completion.

These are the other features that are described in the Future Work/After
GSoC Ends section:

1.​ Implementation of thread functionality which is provided by RocketChat.
2.​ Login using email and password.
3.​ Migrating the whole codebase to typescript

3

Implementation Details

1.​ Overall Component View
Once the whole component is assembled, any React-based web application can just do
npm i @rocket.chat/reactjs-component to install the full-stack ReactJS RocketChat
component into their application.
Significance of each prop:

-​ host - host is the RocketChat instance URL that the in-app chat developer has
hosted, it is required for authentication requests, API calls, and real-time socket
connection. <STRING>

-​ height - total component height prop <NUMBER | STRING> (analogous to CSS
height)

-​ Width - total component width prop <NUMBER | STRING> (analogous to CSS width)
-​ isClosable - boolean to show/hide the close button and also throw an error if it is

set to true and [closableState, setClosableState] are not provided to it. <BOOLEAN>
-​ closableState - the state which will track the opening and closing of the RocketChat

component. <STATE>
-​ setClosableState - this can be used in both the user’s custom button component

onClick event and also can be passed through to the RocketChat component for
toggling state. <SETSTATE>

-​ authType - this prop acts as a conditional to change the type of authentication the
in-app chat developer wants to proceed with. <”emailpass” | “sso” | “both”>

-​ GOOGLE_SECRET - required when authType is set to “sso” <STRING>
-​ GOOGLE_CLIENT_ID - required when authType is set to “sso” <STRING>
-​ moreOpts - to show a dropdown full of other functionalities such as pinned

messages of the channel, starred messages of the channel and attachments of the
channel. <BOOLEAN>

-​ className - to provide extra styling functionality to message component <STRING>
-​ roomId - id of the channel which will be opened and listened to in the RocketChat

component <STRING> or,
-​ roomName - name of the channel which will be opened and listened to in the

RocketChat component <STRING>

<RocketChat ​
 host={host}​
 height={height}​
 width={width}​
 isClosable={true}​
 closableState={toggleCloseState}​
 setClosableState={setToggleCloseState}​
 authType="both"​

4

 GOOGLE_SECRET={googleSecret}​
 GOOGLE_CLIENT_ID={googleClientId}​
 moreOpts={true}​
 className={className}​
 roomId={roomId}​
 roomName={roomName}​
/>

2.​ Setting up the environment

There are two main bundlers in the market to develop this npm module, both are equally
suitable bundlers for development. They offer some perks and come with some drawbacks.
Methods:

1.​ Using Rollup
2.​ Using Webpack

For the RocketChat component, I would like to implement it using Rollup as it has become
the defacto while developing libraries. Some of the main reasons can be highlighted here in
these blogs:

-​ Benchmarking-rollup-webpack-parcel
-​ webpack-and-rollup-RichHarris

One of the best features is it produces a lightweight library release.

I’ve tested out both the bundlers and have set up sample configuration files for creating a
component library and they can be found here.

Other essential setups which are going to help in the future:
➢​ Setting up prettier with Eslint
➢​ Adding “scripts” for tests, build, lint, etc.
➢​ Husky pre-commit git hook to run tests, and lint before pushing to GitHub.
➢​ A playground directory, to run and test out the application (which will be a simple

react application generated from create-react-app).
➢​ CI pipeline using GitHub actions to check code quality and build/tests.
➢​ Add a CD pipeline to automate the process of publishing to npm.

5

https://rollupjs.org/guide/en/
https://blog.logrocket.com/benchmarking-bundlers-2020-rollup-parcel-webpack/
https://medium.com/webpack/webpack-and-rollup-the-same-but-different-a41ad427058c
https://github.com/sidmohanty11/crl-templates

3.​ Designing the UI using Fuselage Design System
Designing the UI will involve the implementation of the following components

-​ Box, Message, Message Toolbox, Icons, Button, etc from Fuselage
-​ Creating an Emoji Picker using Joypixels emojis
-​ Header portion using Fuselage (<Box />, <Dropdown />, etc)
-​ The overall component will be divided into roughly three sub-components to ensure

minimum re-rendering of the application and increase performance. These
components can be visualized as
➢​ ChatHeader: Provide details about the channel and a kebab menu which

onClick will open up a dropdown suggesting if the user wants to check the
attachments, pinned messages, starred messages, etc.

➢​ ChatBox: The component to map out all the messages and update UI when a
new message is received.

➢​ MessageBox: This will be the Input component responsible to send messages
and emojis.

Visual representation/Mockups for the RocketChat component:-

Fig. 1. Visualization of the RocketChat component

We use Fuselage’s own Message component to show the messages.

6

Fig. 2. Visualization of the Chat Message component

More on this can be found on my Figma workflow here.

The design-related props that the component will receive-
1.​ height and width
2.​ className for customizations/theming

To make it fully configurable, we can add a prop - isClosable, this will help the
in-app chat developer to configure it really well with the design as there can be
broadly two scenarios:

i. When a user wants to keep the RocketChat component hidden and can
open/close it with the use of state management.

Fig. 3. Visualization of closable functionality of RocketChat component

ii. When a user wants to show the RocketChat component all the time.

7

https://www.figma.com/file/hj0BqzAvB15zBv7A8fMYc9/InAppChat?node-id=0%3A1

Fig. 4. When the RocketChat component doesn’t need to be closed

4. Authentication using RocketChat’s Google SSO or Email/Password
Handling authentication will be one of the greatest challenges of the RocketChat
component. We can’t even proceed to get messages of the channel if we don’t have two
things (from the user):

-​ rc_token and,
-​ rc_uid

After that only we can think about getting/sending messages from a room by providing the
roomId. With that said, how can we get these?

Some ways/situations:
1.​ Case 1: The In-app chat developer uses the same domain for hosting his/her

RocketChat instance. For example, if a user has a shopping site hosted on
myshoppingsite.com, and he/she hosts the RocketChat instance at
chat.myshoppingsite.com then every user who joins the RocketChat instance will
already have the cookie in the browser. We can leverage this and authenticate the
user directly by using the cookies. So that we can directly call API requests and
authenticate users.

8

Fig. 5. SameSite Cookies mechanism

2.​ Case 2 (EXTRAs): Most of the developers don’t have the patience right away to set up
all the things from the start and want to take things in a progressive manner. Out of
the box, RocketChat instances support email/password login which can be
integrated into the RocketChat component for simpler use cases where in-app chat
developers don’t want to set up a full-fledged OAuth system and just want to try out
things. This will only need the users to put in their email and password (if and only if
they already have an account in that RocketChat instance) and with this, we can
successfully log in a user and get the rc_token and rc_uid. The endpoint that will be
used to authenticate users with login and password is Login endpoint of RocketChat.

Fig. 6. Workflow: Login with email and password in the RocketChat component

3.​ Case 3: This will be the most preferable way to set up authentication in the

RocketChat component for any production application. For setting up Google sign-in
into RocketChat instance, (as almost everyone uses a Gmail account and it is just a
click to sign in or signup) we need to configure Google OAuth in RocketChat. This
process will need us to set up a google OAuth App in Google’s developer console.
For setting up Google SSO in the RocketChat component, we need to get the
CLIENT_ID and CLIENT_SECRET as props from the RocketChat component user and
everything else will be handled in the RocketChat component itself. How you may
ask? In a nutshell, we need to set up the google popup (which appears when we click
on “Login with Google”) and after a successful login into google, we will receive the
idToken and accessToken from google which we can use to authenticate the user
using RocketChat’s Login with Google endpoint, as we require only those two
parameters. And we will be getting a user response back from the RocketChat
server from which rc_token and rc_uid can be extracted out and we are again good
to go in making API calls and requests.
A sample response would look like this:

9

https://developer.rocket.chat/reference/api/rest-api/endpoints/other-important-endpoints/authentication-endpoints/login
https://developer.rocket.chat/reference/api/rest-api/endpoints/other-important-endpoints/authentication-endpoints/google

Fig. 7. Login with Google SSO through RocketChat component Response

Fig. 8. Workflow: Login with Google SSO through RocketChat component
5. Providing real-time chat functionality using RocketChat node.js

SDK
Rocket.Chat’s node.js SDK provides us with a DDP(Distributed Data Protocol) driver. DDP is
a stateful WebSocket protocol that meteor uses for client-server communication.
Underneath the hood, RocketChat SDK uses its Realtime API to connect to a publication
endpoint, receive data and listen for updates. This subscription model ensures that
real-time messaging can be done without relying on 3rd-party providers or by re-writing
socket implementations.
Implementing this will require us to use the latest SDK release (used by the mobile client).
We can import a RocketChat client instance that will handle the socket connection. This
instance implements socket connection methods that are being used by RocketChat in
their LiveChat and Mobile App.
So, in this case, most of the heavy lifting will be done by the SDK and we just need to
connect it to the frontend. A sample code will look something like this:

10

https://github.com/RocketChat/Rocket.Chat.js.SDK
https://developer.rocket.chat/reference/api/realtime-api/subscriptions

import { Rocketchat } from "@rocket.chat/sdk";​
​
const client = new Rocketchat({

 logger: console,

 protocol: "ddp",

 host,

 useSsl

});​
​
const runRealtime = async (token, rid) => {​
 try {​
 await client.connect();​
 // login to the RC-server​
 await client.resume({ token });​
 // subscribe to the room's messages​
 await client.subscribe("stream-room-messages", rid);​
 client.onMessage(() => {​
 // update data real-time​
 });​
 } catch(err) {​
 // handle error​
 }​
 };

 6. The Message Component in Depth
There is a whole Message component in RocketChat’s Fuselage which can be found here.

●​ It provides us with a className prop which can be useful to change its themes but it
requires them to set an !important tag to the CSS.

●​ MessageHeader, MessageName, MessageUsername will be used to display the user
details.

●​ MessageBody is the section where we will be rendering the messages sent. For this
a simple and re-usable Markdown component is written here in RocketChat
MarkdownText Component.

●​ Toolbox will come in handy to show 3 interactive options to the users which are,
1.​ Pin that message
2.​ React to that message
3.​ Star that message

11

https://rocketchat.github.io/Rocket.Chat.Fuselage/fuselage/master/?path=/story/message-message--default
https://github.com/RocketChat/Rocket.Chat/blob/develop/apps/meteor/client/components/MarkdownText.tsx
https://rocketchat.github.io/Rocket.Chat.Fuselage/fuselage/master/?path=/story/message-messagetoolbox--default

<Message className="customclass" clickable key={m._id}>​
 <MessageContainer>​
 <MessageHeader>​
 <MessageName>{m.u.name}</MessageName>​
 <MessageUsername>@{m.u.username}</MessageUsername>​
 <MessageTimestamp>​
 {new Date(m.ts).toDateString()}​
 </MessageTimestamp>​
 </MessageHeader>​
 <MessageBody>​
 {/* formats the message (legacy) */}​
 <MarkdownText body={m.msg} />​
 </MessageBody>​
 </MessageContainer>​
 <MessageToolboxWrapper>​
 <MessageToolbox>​
 {/* onClick will pin the message */}​
 <MessageToolboxItem icon="pin" />​
 {/* onClick will open the EmojiPicker for reacting to the

message*/}​
 <MessageToolboxItem icon="emoji" />​
 {/* onClick will star the message */}​
 <MessageToolboxItem icon="star" />​
 </MessageToolbox>​
 </MessageToolboxWrapper>​
 </Message>

7. Using RocketChat REST API and building a solid foundation for

RocketChat component API requests
Below are the mentioned endpoints, the reason why to use that endpoint, and a sample
code snippet that gives us an overview.

For all these requests, we need to make a request to the RocketChat server. For each
endpoint, a separate helper function can be created which will come in handy and we can
maintain a modular design for the codebase.

export const handler = async (params) => {​
 try {​
 const response = await

axios.get(`${params.host}/api/v1/<<endpoint>>?roomId=${params.ri

12

d}`, { headers: {​
 "Content-Type": "application/json",​
 "X-Auth-Token": cookies.rc_token,​
 "X-User-Id": cookies.rc_uid,​
 } })​
 return handleResponse(response);​
 } catch (err) {​
 // handle error​
 }​
};

​ Send Message endpoint is the most crucial and basic one, that will be used to send
messages and as we have subscribed to the room messages, we can update the UI in
real-time.

 /POST request
★​ Send message - this endpoint will be used for sending messages to the channel.

The endpoints listed below are going to be used all over the application.

/GET requests to fetch our desired response.
★​ Channel Info - this endpoint will give us all necessary channel information like room

name, announcement (if any), and description.
★​ Get messages - this endpoint will give us the latest 50 messages, which we can

modify if we like (but it will be more than enough to show in the in-app chat
component). This will get iterated in the <ChatBox /> component using the
<Message /> component of RocketChat’s Fuselage Design system.

★​ Get attachments - this endpoint will be used to get all the attachments sent in the
channel and we can preview them from the in-app chat. For starters, it will show
videos, photos, mp3 and mp4 files and for the rest, it will appear as a file download
button with the filename.ext so that the user can download and use the file.

13

https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/sendmessage
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/channels-endpoints/info
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/channels-endpoints/messages
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/channels-endpoints/files

Fig. 9. Example Image Attachment Object

★​ Get pinned messages - this endpoint will be used to get all the pinned messages of

the channel and will be presented in the pinned messages section.
★​ Get starred messages - this endpoint will be used to get all the starred messages of

the channel and will be presented in the starred messages section.

 ​ These functionalities are going to be used in the message toolbox -

 /POST requests
★​ Pin message - Endpoint used to pin a message in the channel.
★​ Star message - Endpoint used to star a message in the channel.
★​ React to a message - Endpoint used to react to a message in a channel.

8. Emoji Picker
For emojis, RocketChat uses Emojione’s emoji pack. To implement this a custom Emoji
Picker component will be made (a working example is shown below in the rollup
environment). This component will be used in both the react to a message part and also for
sending emojis from the <InputBox /> component.

Fig. 10. Example EmojiPicker component for RocketChat component

An example code snippet for implementation is attached below:

14

https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/getpinnedmessages
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/getstarredmessages
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/pinmessage
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/starmessage
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/chat-message-reactions

Code:

import React, { useState } from 'react'​
import EmojiPicker from "emoji-picker-react";​
import JSEMOJI from "emoji-js";​
​
let jsemoji = new JSEMOJI();​
jsemoji.img_set = "emojione";​
jsemoji.img_sets.emojione.path =​
 "https://cdn.jsdelivr.net/emojione/assets/3.0/png/32/";​
​
jsemoji.supports_css = false;​
jsemoji.allow_native = false;​
jsemoji.replace_mode = "unified";​
​
const App = () => {​
 const [emoji, setEmoji] = useState()​
 const [openEmoji, setOpenEmoji] = useState(false)​
​
 const handleClick = (n, e) => {​
 let emoji = jsemoji.replace_colons(`:${e.name}:`);​
 setEmoji(emoji);​
 }​
 return (​
 <div>​
 <button onClick={() => setOpenEmoji(prevState =>

!prevState)}>emojipicker</button>​
 {openEmoji && <EmojiPicker onEmojiClick={handleClick} /> }​
 <p>Emoji Chosen: <div dangerouslySetInnerHTML={{ __html:

emoji }}></div></p>​
 </div>​
)​
}​
​
export default App

9. Ensuring read-only functionality when the user is not logged in?
To provide read-only messages functionality to users while they are not logged in to the
RocketChat component, there are some steps the in-app chat developer should take.
Firstly, he/she must allow Anonymous Read in Administration -> Accounts -> Enabling

15

Anonymous Read.

Fig. 11. Enabling “Allow Anonymous Read”

After that, we can send a request to the server to send us all the messages of the channel
using anonymous-read endpoint.

10. Documentation
As the RocketChat component has so many facets to it, it is not possible for the in-app chat
developer to predict an outcome and work on that basis. So, I will be maintaining
full-fledged documentation that will help the in-app chat developer.

From setting up the RocketChat component’s host to authentication to the anonymous
read part, every portion will be super descriptive and full of diagrams so that it will take a
maximum of one day to set up the RocketChat component.
​
I will be adding both quickstart video tutorials and also tutorials explaining how I made the
RocketChat component so that it can be developed with any frontend framework very
quickly.

Also, I will be answering all the FAQs that might arise while developing the RocketChat
component.

11. Publishing the npm package and testing
Testing:

●​ React testing library along with jest will be used to test the component.
●​ I will be testing the component prop-wise to ensure that it works properly and as

expected in every situation.

16

https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/channels-endpoints/anonymousread
https://testing-library.com/
https://jestjs.io/

Publishing to npm (steps):
●​ Login into npm, npm login
●​ Then, add all the necessary details in the package.json
●​ npm publish
●​ To update the package and handle the versioning part efficiently, np can be used

and we can start a consistent release cycle.

GitHub Actions:
●​ Add config files to run npm test and npm build to every push to develop branch
●​ This will ensure our application stays working in all cases.
●​ Add a CD pipeline to publish the application to the npm registry when there is a

push to the prod branch.

Detailed Work Plan
Application Review Period (Upto 20th May)
During the application review period, I plan to dive deep into the RocketChat node.js SDK
code and figure out all the possibilities that could make the RocketChat component more
extensible in the future. I would also be researching a lot through the RocketChat
codebase, about how they handle certain situations and take notes to implement a similar
robust structure in the RocketChat component.

Community Bonding Period (May 20th - June 12th)
During the community bonding period, I intend to set up clear communication with my
mentor. Discussion regarding any blockers or edge case scenarios that we might encounter
will be a priority.

Also, I would like to know the community better by connecting to more members of the
organization and participating in discussions to know the future plans for the SDK and
RocketChat so that I can develop the RocketChat component in a better way.

[coding period starts]

Week 1 (13th June - 19th June)
-​ Setting up the development environment
-​ Creating the UI of the RocketChat component with some dummy data, Fuselage

icons, and components.

Week 2 (20th June - 26th June)
-​ UI refinements
-​ Testing all possible scenarios for theming the RocketChat component
-​ Working on the responsiveness for both smaller and larger screens

17

https://www.npmjs.com/package/np

Week 3 (27th June - 3rd July)
-​ Setup Authentication with Google SSO Login

Week 4 (4th July - 10th July)
-​ Authentication portion continued, if not finished
-​ Setup sending and receiving messages in real-time
-​ Handling any possible errors

Week 5 (11th July - 17th July)
-​ Getting channel details (Chat Header)
-​ Handling announcements
-​ Providing more options (channel’s pinned, starred, attachments)

Week 6 (18th July - 24th July)
-​ Legacy Markdown Component setup for the rendering of messages

[1st phase evaluation]

Week 7 (25th July - 31st July)
-​ EmojiPicker Component
-​ Successfully sending and receiving emojis

Week 8 (1st August - 7th August)
-​ Handling attachments

Week 9 (8th August - 14th August)
-​ Reacting to messages
-​ Handling mentions to other users

Week 10 (15th August - 21st August)
-​ Pinning messages
-​ Starring messages

Week 11 (22nd August - 28th August)
-​ Rigorous testing
-​ CI/CD pipeline setup

Week 12 (29th August - 4th September)
-​ Buffer period and bug fixes
-​ Handling unpredictable edge case scenarios

18

[final week]

Week 13 (5th September - 12th September)
-​ Documentation
-​ Creating a summary of work done during the GSoC period
-​ Final work product launch

Future Work/After GSoC Ends Section
I would love to contribute more to the RocketChat component by adding more interesting
features to it, making it a more effective component that can provide a great engagement
level to the web apps which decide to use this component.
I would also try to implement the features that are listed in the Extras section.

1.​ Threads Functionality - threads are one of the most used and useful features of
RocketChat which separates itself from its competitors. Providing thread
functionality will be a lot beneficial for the users as it will decrease a lot of clutter. It
can be implemented by Get Channel Threads endpoint which will list all the thread’s
“start” messages. By this, we can get the id of every thread which is called “tmid” in
RocketChat, and send another request to the Get Thread Messages endpoint which
will give us all the follow-up messages inside that thread.

2.​ Login with email and password - This section has been described in the
Authentication using RocketChat’s Google SSO or Email/Password implementation
section(case-ii).

3.​ Migrating from JS to TS - This will help us in the long run when the RocketChat
component’s codebase grows, new developers can just go through type definitions
and understand the codebase easily. This will also help us provide auto-suggestions
in VS Code and our code will be less vulnerable to unpredictable results.

Related Work Done
I have already made myself familiar with the project because I was working on integrating a
mini in-app chat for the RocketChat 2022 Alumni Summit Conference in RC4Community.
I have developed the barebone structure of the in-app chat application. It was developed
for the purpose of the Alumni conference and it supports all the basic features like
sending/receiving messages, emojis, etc.

1.​ [Merged] RC4Community #78: Working Demo of the application without real-time
functionality (only REST API calls) and cookies for authentication.

2.​ [Merged] RC4Community #89: Working Demo of the application with real-time
functionality (with RocketChat’s node.js SDK).

I have also built several wireframes for various deliverables, features, and the overall
workflow of the RocketChat component. The wireframes used in this proposal as well as
several more for in-detailed flow can be found in this Figma file.

19

https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/getthreadslist
https://developer.rocket.chat/reference/api/rest-api/endpoints/team-collaboration-endpoints/chat-endpoints/getthreadmessages
https://github.com/RocketChat/RC4Community/pull/78
https://github.com/RocketChat/RC4Community/pull/89
https://www.figma.com/file/hj0BqzAvB15zBv7A8fMYc9/InAppChat?node-id=0%3A1

Relevant Experiences
I have been a consistent and active contributor to RocketChat for the past five months now.
I have also remained the top contributor with the most number of PRs in the GSoC 2022
Leaderboard. I have contributed to numerous projects within the organization.
A list of my contributions is listed below:
Issues:
RocketChat/Rocket.Chat

●​ Issues (Total: 3)
RocketChat/Rocket.Chat.Fuselage

●​ Issue (Total: 1)
RocketChat/RC4Community

●​ Issue (Total: 1)

Pull Requests:
Total: 30​ Merged: 18​ Under-review: 12

1.​ [Merged] RC4Community #47 - [NEW] RocketChatLinkButton Component

2.​ [Merged] RC4Community #66 - wip: github components kit

3.​ [Merged] RC4Community #78 - wip: inappchat component for virtual conference

4.​ [Merged] RC4Community #83 - Add Mainstage Speakers Conference Page

5.​ [Merged] RC4Community #85 - [NEW] inappchat setup docs

6.​ [Merged] RC4Community #86 - [NEW] inappchat in greenroom

7.​ [Merged] RC4Community #89 - [NEW] Realtime InAppChat using RocketChat-SDK

8.​ [Merged] RC4Community #93 - [FIX] Re-rendering of InAppChat

9.​ [Merged] RC4Community #97 - [IMPROVE] mainstage design with coutdown, local

date showtime and speakers

10.​[Merged] RC4Community #107 - [FIX] handling error and not showing InputBox

when not authenticated

11.​[Merged] RC4Community #112 - [IMPROVE] Inappchat improvements and fixes

12.​[Merged] RC4Community #118 - [IMPROVE] realtime emoji animation

13.​[Merged] RC4Community #139 - chore: changing from community.liaison to open

14.​[Merged] Rocket.Chat #23605 - [IMPROVE] Add Rocket.Chat version to User-Agent

header for oembed requests

15.​[Merged] Rocket.Chat #23882 - [FIX] Custom emoji route in admin

16.​[Merged] Rocket.Chat #23970 - [FIX] Filter ability for admin room checkboxes

17.​[Merged] Rocket.Chat #24117 - [FIX] Custom Emoji Image preview

18.​[Merged] Rocket.Chat #24933 - [FIX] Deactivating user breaks if user is the only

room owner

20

https://gsoc.rocket.chat/
https://github.com/RocketChat/Rocket.Chat/issues/created_by/sidmohanty11
https://github.com/RocketChat/Rocket.Chat.Fuselage/issues/640
https://github.com/RocketChat/RC4Community/issues/80
https://github.com/RocketChat/RC4Community/pull/47
https://github.com/RocketChat/RC4Community/pull/66
https://github.com/RocketChat/RC4Community/pull/78
https://github.com/RocketChat/RC4Community/pull/83
https://github.com/RocketChat/RC4Community/pull/85
https://github.com/RocketChat/RC4Community/pull/86
https://github.com/RocketChat/RC4Community/pull/89
https://github.com/RocketChat/RC4Community/pull/93
https://github.com/RocketChat/RC4Community/pull/97
https://github.com/RocketChat/RC4Community/pull/107
https://github.com/RocketChat/RC4Community/pull/112
https://github.com/RocketChat/RC4Community/pull/118
https://github.com/RocketChat/RC4Community/pull/139
https://github.com/RocketChat/Rocket.Chat/pull/23605
https://github.com/RocketChat/Rocket.Chat/pull/23882
https://github.com/RocketChat/Rocket.Chat/pull/23970
https://github.com/RocketChat/Rocket.Chat/pull/23605
https://github.com/RocketChat/Rocket.Chat/pull/24933

19.​[Open] Rocket.Chat #24440 - [IMPROVE] Cursor pointer to all the action buttons

20.​[Open] Rocket.Chat #24135 - [NEW] omnichannel delete contact functionality

21.​[Open] Rocket.Chat #24116 - [IMPROVE] Omnichannel contact updates after

addition or edit of any contact

22.​[Open] Rocket.Chat #24063 - [IMPROVE] showing role names instead of random ids

everywhere

23.​[Open] Rocket.Chat #23764 - [IMPROVE] Optional Ability to delete DMs for users

24.​[Open] Rocket.Chat #23685 - [IMPROVE] Adding a jump to message button to

quote messages

25.​[Open] Rocket.Chat #23655 - [IMPROVE] Adding a separate "Mark Threads Read"

for reading all unread threads

26.​[Open] Rocket.Chat #23650 - [IMPROVE] Drag and Drop UI for files only

27.​[Open] Rocket.Chat #23632 - [IMPROVE] Adding a noscript tag for letting users

know if they have JS disabled

28.​[Open] RC4Community #51 - [On Hold - June 22] Pre commit hooks

29.​[Open] Rocket.Chat.Fuselage #699 - fix: handling visibility of options in multiselect

30.​[Open] Rocket.Chat.Fuselage #700 - docs: Fuselage usage docs and npm links fix

In addition to contributing to RocketChat projects, I always have been looking for
opportunities to help out the community in any way possible, this can be demonstrated by
RocketChat.GSoCLeaderboard App which I made in order to simplify the process of
addition of potential contributors to the GSoC leaderboard.

Prior to contributing to RocketChat, I have also published an open-source product that can
help developers document their code called jsnotion which has been receiving consistent
downloads(peak downloads reached: 299/day).

Projects that I’ve worked on
➢​ jsnotion

Description: A code documentation application which is an installable npm
package, that can run code in the browser itself without needing any backend
service.

Highlight: Made a custom esbuild plugin to handle code bundling in the browser.
Receiving consistent downloads daily (93+ per month) and peak downloads reached
is 299 per day.

Technologies Used: TypeScript, React, Redux, Express, Commander.js

Why is this relevant to RocketChat ReactJS full stack project?

21

https://github.com/RocketChat/Rocket.Chat/pull/24440
https://github.com/RocketChat/Rocket.Chat/pull/24135
https://github.com/RocketChat/Rocket.Chat/pull/24116
https://github.com/RocketChat/Rocket.Chat/pull/24063
https://github.com/RocketChat/Rocket.Chat/pull/23764
https://github.com/RocketChat/Rocket.Chat/pull/23685
https://github.com/RocketChat/Rocket.Chat/pull/23655
https://github.com/RocketChat/Rocket.Chat/pull/23650
https://github.com/RocketChat/Rocket.Chat/pull/23632
https://github.com/RocketChat/RC4Community/pull/51
https://github.com/RocketChat/Rocket.Chat.Fuselage/pull/699
https://github.com/RocketChat/Rocket.Chat.Fuselage/pull/700
https://github.com/sidmohanty11/RocketChat.GSoCLeaderboard.App
https://github.com/sidmohanty11/jsnotion

​ Both of them are developed in ReactJS and possess full-stack capabilities.

​ Project Link: https://github.com/sidmohanty11/jsnotion

➢​ convo

Description: A full-stack chatting application that has a similar system design as
WhatsApp.

Highlight: Working with WebSockets and real-time messaging functionality.

Technologies Used: Vue.js, Golang, MongoDB

Why is this relevant to RocketChat ReactJS full stack project?
A clear understanding of how REST APIs, Websockets, and Subscription-based
models work.

Project Link: https://github.com/sidmohanty11/convo

➢​ Next-ecom
Description: A full-fledged e-commerce application with Shopify API integration.

Highlight: Scalable code and Shopify API integration.

Technologies Used: Next.js, GraphQL, Shopify API, TypeScript

Why is this relevant to RocketChat ReactJS full stack project?
Integrating a foreign API by going through its documentation.

Project Link: https://github.com/sidmohanty11/next-ecom

➢​ mingo
Description: An HTTP client library similar to axios, developed in golang.

Highlight: Client requests and API calls.

Technologies Used: Golang

Why is this relevant to RocketChat ReactJS full stack project?
Making API calls, knowledge of request/response headers, and cookies. Comfortable
with language switches and willingness to learn and adapt.

Project Link: https://github.com/sidmohanty11/mingo

22

https://github.com/sidmohanty11/jsnotion
https://github.com/sidmohanty11/convo
https://github.com/sidmohanty11/next-ecom
https://github.com/sidmohanty11/mingo

Why do I think I’m well suited for this project?
I am well versed with React.js and while working on the InAppChat component for
RC4Community, this has enhanced my knowledge and ideas about how I can build it in the
best way.

Staying the top contributor this season shows my hard work and love for the RocketChat
community. I am a good team player and I actively lookout to help my peers, for this, I have
made a lot of friends in the open-source community and was nominated by all the team
members of RC4Community to add this milestone commit.

I have been contributing to RocketChat for several months now, and I have familiarized
myself with the base model on which RocketChat works. I have gathered a lot of knowledge
about its API and also about the SDK.

Moreover, I love the RocketChat community. I have learned a lot from my peers and
mentors during this period of time and would like to do more of this in the future.

Time availability
How much time do you expect to dedicate to this project?
As my end-semester exams will be over on April 10th, I don’t have any major academic
commitments throughout the GSoC timeframe. I would be able to dedicate 40hrs per week
to this project.

Please list jobs, summer classes, and/or vacations that you’ll need to
workaround.
I haven’t joined any summer classes or internships. I don't have any plans to go on a
vacation anytime between the GSoC period. I will be available for calls from 10 am IST to 11
pm IST on both weekdays and weekends.

23

https://github.com/RocketChat/RC4Community/commit/ddc933b9cc0e4d53f4041682d01789ee8477ee0a

	About Me
	Abstract
	Benefits to the Community
	Goals
	Deliverables
	Extras
	Implementation Details
	1.​Overall Component View
	2.​Setting up the environment
	3.​Designing the UI using Fuselage Design System
	Visual representation/Mockups for the RocketChat component:-
	Fig. 1. Visualization of the RocketChat component
	Fig. 2. Visualization of the Chat Message component
	Fig. 3. Visualization of closable functionality of RocketChat component
	Fig. 4. When the RocketChat component doesn’t need to be closed

	4. Authentication using RocketChat’s Google SSO or Email/Password
	Some ways/situations:
	Fig. 5. SameSite Cookies mechanism
	Fig. 6. Workflow: Login with email and password in the RocketChat component

	5. Providing real-time chat functionality using RocketChat node.js SDK
	 6. The Message Component in Depth
	7. Using RocketChat REST API and building a solid foundation for RocketChat component API requests
	 /POST request
	/GET requests to fetch our desired response.
	Fig. 9. Example Image Attachment Object
	 /POST requests

	8. Emoji Picker
	Fig. 10. Example EmojiPicker component for RocketChat component
	Code:

	9. Ensuring read-only functionality when the user is not logged in?
	Fig. 11. Enabling “Allow Anonymous Read”

	10. Documentation
	11. Publishing the npm package and testing
	Testing:
	Publishing to npm (steps):
	GitHub Actions:

	Detailed Work Plan
	Application Review Period (Upto 20th May)
	Community Bonding Period (May 20th - June 12th)
	Week 1 (13th June - 19th June)
	Week 2 (20th June - 26th June)
	Week 3 (27th June - 3rd July)
	Week 4 (4th July - 10th July)
	Week 5 (11th July - 17th July)
	Week 6 (18th July - 24th July)
	Week 7 (25th July - 31st July)
	Week 8 (1st August - 7th August)
	Week 9 (8th August - 14th August)
	Week 10 (15th August - 21st August)
	Week 11 (22nd August - 28th August)
	Week 12 (29th August - 4th September)
	Week 13 (5th September - 12th September)

	Future Work/After GSoC Ends Section
	Related Work Done
	Relevant Experiences
	Projects that I’ve worked on
	➢​jsnotion
	➢​convo
	➢​Next-ecom
	➢​mingo

	Why do I think I’m well suited for this project?
	Time availability
	How much time do you expect to dedicate to this project?
	Please list jobs, summer classes, and/or vacations that you’ll need to workaround.

