
Unit 1: Systems design 

System development life cycle 

This unit considers the equivalent of the old MYP Design cycle. At university level for a 
Computer Science course, the design cycle is known as the SDLC: System 
development life cycle (some books substitute "system" with "software"). 

The major sections of the SDLC are: 

●​ Requirements analysis 

●​ Design 

●​ Implementation 

●​ Testing 

●​ Evolution 

We will examine each section for what needs to occur. 

 

SDLC Phase 1: Requirements analysis 

Aim of phase 1: Figure out what the project needs to accomplish. 

There are typically 4 elements to this: 



●​ Project scoping 

●​ Stakeholder consultation 

●​ Project research 

●​ Requirements planning 

 

Project scoping 

Find out exactly what it is you have to do 

A scope document allows all parties to agree in writing as to what is and is not 
included within the project. It effectively becomes the contract and establishes 
common expectations for client and creator. 

●​ Happy customer = good word of mouth. 

●​ Disgruntled customer (feels ripped off or that you didn't deliver on what was 
promised) = bad for business. 

●​ Burnt out producer (feeling taken advantage of, frustrated at changing 
requirements) = Not healthy! 

Scoping should be SMART 

●​ Specific 

●​ Measurable 

●​ Agreed upon 

●​ Realistic 

●​ Time bound 

Ensure your scopes identify time, financial and resource constraints! 

It is inevitable that a project scope will change over time. When that occurs, beware 
the challenges of scope creep vs scope discovery: 

●​ Changes to the scope that make it more clear / less vague = Scope discovery 

●​ Changes that make the scope less clear / more vague = Scope creep 

 

Stakeholder consultation 

Identifying stakeholders 

●​ Who is relevant? Employers, employees, customers…? 

●​ Who will use the system? 

●​ Who will depend on the system (even if they don't use it directly)? 



●​ Who will provide information the system depends on? (even if they don't enter 
it directly) 

●​ Who is paying for the system? (why?) 

Possible strategies for obtaining requirements from stakeholders 

●​ Surveys 

●​ Interviews 

●​ Direct observations 

●​ Document collection 

Failure to involve all relevant stakeholders may lead to software that is not suitable for 
its intended use! (The manager doesn't necessarily always know what the clerical staff 
do!) 

Effective collaboration and communication between all parties: client, developer, end 
users. 

Consultation should occur continually throughout the lifecycle to identify problems 
early. 

Be aware of privacy issues – being able to get honest, frank information from a 
stakeholder without fear of retribution (eg: a staff member who might have valuable 
insight into how some part of the system doesn't work the way management thinks it 
does) – create an environment where you can extract those valuable nuggets 

 

Exercise 

Split off into pairs - one taking the role of customer, one taking the role of developer. 
Customer comes up with an app/software project they want the developer to "design". 
Developer must ask questions to ascertain: 

●​ A scope document: Explicitly list "in scope" and "out of scope" items 

●​ Identify stakeholders 

●​ Requirement specification: Functional and non-functional items 

Reverse roles when ready. 

Save these project outlines as we will continue to use them. 

 

Project research 

●​ Examine the current system that yours will replace – strengths, weaknesses, 
features. 



●​ Examine competing products – strengths, weaknesses, idiosyncrasies. 

●​ Examine your capabilities – what are you capable of producing? if you need 
additional expertise, what can you afford to recruit? 

●​ Examine the literature (journals, online forums) – how are other people 
addressing the problem? 

When researching your project, don't forget to account for international factors. 

●​ Does your program only have to work for a homogeneous group of people in 
the same location? Or might you have to deal with different timezones, different 
languages, different conventions in date formats? Things can get very complex 
very quickly as these videos demonstrate. 

●​ The Problem with Time & Timezones - Computerphile​
https://www.youtube.com/watch?v=-5wpm-gesOY 

●​ Internationalis(z)ing Code - Computerphile​
https://www.youtube.com/watch?v=0j74jcxSunY 

 

Requirements planning 

Your requirements are generally split into functional and non-functional requirements. 

●​ Functional: What will the program actually do? For example: 
o​ Store hours worked per employee per day 
o​ Store hourly rates for employees by category of employment 
o​ Store daily timesheets for up to 5 years history 
o​ Calculate income tax obligiations per employee at the end of each month 

●​ Non-functional: Doesn't affect what the program will actually do, but will impact 
on creating it anyway. For example: 

o​ The system shall run on Android / iOS / the web. 
o​ The system shall be compatible with Microsoft SQL / Google Firebase 
o​ The system shall share data with (insert other existing product here) 
o​ The system shall be operational in 3 months 
o​ The system shall store it's data within Switzerland (due to privacy laws) 

 

SDLC Phase 2: Design 

Aim of phase 2: Create a plan on paper before hacking away at code 

There are typically 3 elements to this: 

●​ Organise your time constraints 

https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=0j74jcxSunY


●​ Diagrammatic representation 

●​ Prototyping 

●​ Client sign off 

There are a range of diagrams that may be useful when designing a new software 
project. We will learn a few key ones now... 

Gantt charts 

TODO: INSERT 

Data flow diagrams 

Dataflow diagrams (DFDs) come in two flavours: 

●​ DFD context diagram – shows the "context" (environment?) your system is part 
of, particularly external entities it has a relationship with 

●​ DFD level 0 diagram – shows inside the main / top level process of the system: 
the core functional parts and the flow of data between them. 

Symbols for DFDs 

 

An example of the two diagrams for a lemonade stand might look like: 

Context diagram 



 

Level 0 diagram 



 

Source: https://www.slideshare.net/mohit4192/dfd-examples 

Rules for DFD 

Context diagram Level 0 diagram 

Only 1 process (it represents 
your entire system) 

Identifies the key processes within your system 
(typically 3 to 8) 

Identifies all external entities 
your system interacts with 

Identifies all external entities your system 
interacts with 

Dataflow arrows should 
identify if the external entity 
is an input, output or both 

Dataflow arrows from entities must go to/from a 
process. You never want external entities 
reading/writing direct to your data sources 

Arrows do not need to be 
labelled 

Data flow arrows should be labelled indicating 
what data is travelling across that path 

https://www.slideshare.net/mohit4192/dfd-examples


Context diagram Level 0 diagram 

No data store elements 
should be identified 

Data stores may or may not be required 
dependent on the project 

Let's look through a few simple examples. 

●​ A food ordering system for a restaurant to manage it's inventory and food 
re-ordering process. 

●​ An app for a supermarket that allows customers to check promotional sales, 
search for items, and order through an online shopping cart. Also lists store 
locations / opening hours etc. 

●​ A system for stock market trader that keeps track of customer accounts, orders 
placed, transactions, deposits and withdrawals. 

Restaurant food ordering system 

 



 

Supermarket customer app 

 



 

Stock market trading app 

 



 

Exercise 

For one of the projects dreamed up in class during phase 1, create the context and level 
0 DFD. 

For example, here is a level 0 DFD from a student dreamed up "Party Finder" app. 

PartyFinder app 

 

 



System flow charts 

Not to be confused with the logic flow chart. 

The main difference between system flowchart and program flowchart is that a system 
flowchart represents an entire system while a program flowchart represents a single 
program. 

Software development is a complex task. It is not possible to write programs for the 
entire system directly. Therefore, it is necessary to model the system to get a better 
understanding of the system. Furthermore, there are different diagrams that help to 
understand the functionality of the system. One such diagram is a flowchart. It is a 
diagrammatic representation that illustrates a solution model to a given problem. 
System flowchart and program flowchart are two types of flowcharts. 

A system flowchart is a diagram that describes how an entire system operates. It helps 
to recognize the flow of operations in the system. It also helps in preparing the required 
documents of the system. 

Features: 

●​ Components of system represented by symbols. 

●​ High level picture that includes the physical system 

●​ Discrete components represented with separate symbols 

Example: 



 

Tips: 

●​ The reality is most documentation online referring to a system flow chart 
actually discuss it as if it were a logic flow chart, and the difference is really 
debatable. 

●​ In an IB exam setting, given the simplicity they have to keep the questions to 
(with so much to cover in an exam, one element like a system flow chart 
wouldn't be more than a few marks at most) there is very little difference, and 
you couldn't go far wrong by drawing a logic flow chart... maybe just make a 
conscious effort to add to it a couple of bubbles for reading/writing to/from a 
file, send to a printer, hardware bits etc. 

Symbols: 



 

Sources: 

●​ Lithmee 2018: What is the Difference Between System Flowchart and Program 
Flowchart​
http://pediaa.com/what-is-the-difference-between-system-flowchart-and-pr
ogram-flowchart/ 

●​ Comp Franklin 2013, System Flow Charts​
https://www.youtube.com/watch?v=QF-ml1QVQYs (8 min) 

●​ edward (nd), "Stockbridge system flowchart example" (CC BY-SA 3.0) via 
Commons Wikimedia 

●​ RFF Electronics (nd), What do the different flowchart shapes mean?​
https://www.rff.com/flowchart_shapes.php 

●​ Lucidchart (2017), Flowchart Symbols & Notation [+ Cheat Sheet]​
https://twitter.com/lucidchart/status/889621014212227072 

 

Structure charts 

http://pediaa.com/what-is-the-difference-between-system-flowchart-and-program-flowchart/
http://pediaa.com/what-is-the-difference-between-system-flowchart-and-program-flowchart/
https://www.youtube.com/watch?v=QF-ml1QVQYs
https://www.rff.com/flowchart_shapes.php
https://twitter.com/lucidchart/status/889621014212227072


Provides a top-down approach to explain how the different parts of the program are 
put together. 

Simplistically: 

●​ Programs are made up of modules 

●​ Modules are made up of subroutines and functions 

●​ Subroutines & functions are made up of algorithms 

●​ Algorithms are made up of lines of code 

●​ Lines of code are made up of statements and data 

 

 

Prototyping 

For our purposes we can treat wireframes, mockups and prototypes as generally 
referring to the same thing (which they do just to different levels of detail). In this sense, 
we are referring to sketches or diagrams that protray screen shots of your intended 
product. 

Purpose? Demonstrates the proposed system to the client. 

Through building multiple prototypes along the way, and iteratively reviewing your 
planning documents, it is hoped you can avoid this kind of scenario… 



 

Some cliche prototypes 

 

An example set of wireframe diagrams follows. You can see that it would make things 
very clear to the client what is being proposed! 



 

Search for "free wireframe tools" and you will find a bunch of useful tools you can use 
to help you with this. 

Some possiblities: 

●​ https://mockflow.com/ (limited free plan) 

●​ https://moqups.com/ (limited free plan, 1 project (limited to 300 objects) and 
5MB of storage) 

●​ https://www.lucidchart.com/ (limited free plan available) 

●​ https://www.adobe.com/products/xd.html (free plan available?) 

●​ https://balsamiq.com/wireframes/ (30 day free trial) 

●​ https://pencil.evolus.vn/ (open source - not updated in a while) 

●​ https://www.uxbox.io/ (open source - still in development) 

Source: 

https://mockflow.com/
https://moqups.com/
https://www.lucidchart.com/
https://www.adobe.com/products/xd.html
https://balsamiq.com/wireframes/
https://pencil.evolus.vn/
https://www.uxbox.io/


●​ https://www.mockplus.com/blog/post/wireframe-example 

 

Entity relationship diagrams 

(not in IB syllabus unless doing Databases option) 

 

Client sign off 

If you expect them to pay your bill, make sure they've agreed to everything... in writing. 

You had the signed and agreed scope, now have them agree to the design you've built 
as the proposed incarnation of that project before you start serious development! 

 

SDLC Phase 3: Implementation (Creation) 

Aim of phase 3: Build it compliant to the design 

Some issues that need to be considered in this phase: 

●​ Choice of technology stack 

●​ Migration issues 

●​ Deployment issues 

●​ Implementation issues 

Implementation issues 

 

Technology stack 

Will your software be available for purchase as: 

●​ Perpetual license? (buy once, use forever) 

●​ Rent? (SaaS… software as a service is becoming popular. Eg: Adobe Creative 
Suite, Microsoft Office 365) 

A lot of major products are moving to a SaaS model (eg: Microsoft Office 365, Evernote, 
Adobe Suite). Sometimes you aren't even installing anything on your computer because 
you are using the "software" through their web portal. Eg: Google Docs. 

https://www.mockplus.com/blog/post/wireframe-example


Modern tools available give wider options for how your new technology might be 
implemented. Specifically a huge development that is comparatively recent is the 
emergence of cloud computing. 

Amazon Web Services, Google Cloud, and Microsoft Azure are the three big global 
players in this space at the moment, though there are others. 

What technologies will you use to build your project and why? 

Common concerns/questions about using the cloud reside around you lacking ultimate 
control over where your data resides, who has access to it. Trust in the cloud provider 
is necessary for this approach to work. 

Elements to evaluate if weighing a cloud-based project: 

●​ Security? 

●​ Encryption? 

●​ Privacy laws (restrictions on where your data may be)? 

●​ Backups? 

●​ Cost? 

●​ Reliability? 

Degrees of cloud based computing. 

 



 

 

Migration issues 

Issues regarding the maintaining compatiblity of your customers data as they migrate 
to your new system. 

●​ Migrating from legacy systems, or through business mergers etc 

●​ International issues: languages, dates, currency, timezones 

●​ System issues: data types and limits. Example: the Y2K issue and Year 2038 
problem 

●​ Converting file formats 

●​ Validating the data you convert from one system to the next (did it all copy 
across? Accurately?) 

 

Deployment issues 

How are you going to deploy your tool? 

●​ App store? 

●​ Website download and install? 

●​ Distribute CD/DVD/USB disks? 

How will you manage updates/patches to your tool? 

●​ Online, self downloading and updating (bonus: customer never has to think 
about it. Downside: think of the fuss over Windows 10 "auto" updating) 

●​ Beware of annoying people by using up their internet quotas, or slowing down 
their link when they are wanting to do something else. 

●​ How can you charge for an update they get automatically? Subscription model 
which is the way most major vendors are going (eg: Office 365). 

●​ Download and manually install at the customers leisure. 



●​ Distribute disks??? Really? Still? 

●​ If your product is web based, you simply update YOUR systems, and all the 
customers get the new experience immediately (whether they want it or not – 
aka facebook's downfall) 

The lesson of Google Chrome in relation to auto-updates done "right". There are a 
multitude of reasons why Google Chrome burst onto the browser market to rapidly 
dominate market share. See Full Circle Design if you are interested in some well 
articulated reasons. The aspect that is of relevance here is automatic updates. No 
longer does the user have to be prompted (nagged) to download updates, go through 
an install screen, possibly reboot their computer etc; Google Chrome keeps itself up to 
date for you behind the scenes. This meant new features, bug fixes, security patches, 
are all rolled out automatically. 

 

 

Implementation issues 

What implementation / conversion method will you use? 

●​ Parallel running - new system runs simultaneously with the old for a given 
period of time 

●​ Phased conversion - new system is implemented one stage at a time 



●​ Pilot running - new system is tried out at a test site before launching it 
company-wide 

●​ Direct change over - entire system is replaced in an instant 

What can you see as the plus/minus/interesting of each? 

See what you can come up with, then read this 

For more detail including examples, read changeover techniques @ 
smallbusiness.chron. 

 

SDLC Phase 4: Testing 

Elements to be considered within the testing phase: 

●​ Test 

●​ User documentation 

●​ User training 

●​ Backup regime tested & in place 

 

Testing 

Testing strategies 

●​ Debugging 

●​ Beta testing 

●​ User acceptance 

●​ Automated testing 

Eg: Seige 

 

User documentation & training 

The quality of your user documentation will affect the rate of implementation, or even 
overall success, of the new system. 

What to provide? 

https://www.igcseict.info/theory/8/implem/
https://smallbusiness.chron.com/changeover-techniques-34890.html
https://smallbusiness.chron.com/changeover-techniques-34890.html


●​ Big fat textbook style "user manuals"? … pretty old school. �Some people don't 
like reading off a screen. Updating the textbook with changes will be difficult 
though. 

●​ Help files 

●​ Online support (online chat to support, online community forums) 

●​ Videos 

What is best for YOUR users in YOUR project? No one-size-fits-all approach 

Along with the documents, there might be a need for actual "training" too… 

●​ Self instruction 

●​ Formal classes 

●​ Online course 

●​ 1:1 coaching 

 

 

Backup regieme 

Data can be lost through a variety of ways. How will your system protect from: 

●​ Malicious activity �(crackers, malware, insider espionage) 

●​ Natural disasters �(fire, flood) 

●​ Human idiocy �(dropping the computer, spilling drink, losing it, leaving laptop 
in a hot car) 

●​ Time �(all disks deteriorate over time) 

The amount of effort/expense dedicated to data loss prevention should be judged by 
the answer to: How would the worst case scenario affect my business? 

Eg: hotels/airlines losing all record of reservations? Banks losing record of all account 
balances? loss of medical records?! 

A data loss prevention reigeme should include a mix of: failover systems, redundancy, 
removable media, offsite/online storage 



Strategies: 

●​ Hot spares 

●​ Cold spares 

●​ Backups 

3-2-1 rule of backups: 

●​ At least 3 copies 

●​ At least 2 different forms 

●​ At least 1 copy offsite 

Other backup related considerations 

●​ Automated vs manual backups 

●​ Full vs differential backups 

Does the cloud count as a backup? 

●​ debatable question? 

●​ always live and available is a positive and a negative? 

●​ quick and easy restoration vs vulunerable to ransomeware attacks 

●​ Simply syncing your files somewhere does not help in many scenarios such as: 

●​ Data corruption 

●​ Malicious software 

●​ Deleting files by mistake 

 

SDLC Phase 5: Evolution 

So, your project is up and running. What's left to do? A post implementation review! 

Gather stakeholder feedback on the whole experience (design, migration, training) not 
just the functionality of the final product. 

What improvements or enhancements do they suggest? 

Start the cycle all over again with your identified changes! 

 



 

 


