
EasyColorize2D Documentation 
version 1.0 

 

Table of content 

EasyColorize2D Documentation 

Table of content 

Introduction 

Where to Begin 

Colorize Window 

Rules of Thumb 

Contact 

Review 

 

 

Introduction 
- EasyColorize2D is a powerful editor tool that simplifies sprite recoloring directly within your 

game development workflow. Unlike complex software like Adobe Photoshop, which requires 

extensive learning, EasyColorize2D allows you to swap colors instantly within a single editor 

window. With just a few clicks, you can select the color you want to change, choose a new color, 

and apply the transformation effortlessly. 

 

Video Guides and Tutorials 
●​ Intro & Full Tutorial 

●​ Sample 2 

●​ Sample 3 

 

Where to Begin 
- Ensure that the Read/Write property of the texture is enabled and the TextureType property 

of the texture is Sprite (2D and UI). 

- In the Unity Editor, Right-click on the Image file you want to colorize in the Project view, then 

select EasyColorize2D > Colorize. The Colorize window will open which looks like the image 

below. 

 

https://youtu.be/SB-2KjFH9uM?si=gXtDTljJf2VI3HhS
https://youtu.be/yzZPO_0DMKM?si=kAtXd2PDhFCSiHZD
https://youtu.be/JG2v8S7UbWU?si=Y0WwThhTBnQN86X4


 

 

Colorize Window 

- This window provides everything you need to change the color of your sprites. I’ve also 

explained its functionality in detail in the YouTube videos with detailed examples, but let’s break 

it down here as well. 

●​ On the left, you’ll see the original texture, and on the right, the texture after applying 

color changes. Initially, both textures are identical. 

●​ In the center, there’s a Color Selection section. The left column displays the dominant 

colors found in the original texture, which are generated through an analysis of the 

image. 

●​ Below the original texture, you’ll find the Min Pixel Percentage setting. Adjusting this 

value and clicking the Reanalyze button updates the dominant colors list, showing only 

those that appear in more than the specified percentage of non-transparent pixels. 

●​ You can remove any of these colors or add custom ones manually using the color picker 

below the column. 

○​ For example, the image below shows the detected colors for the same sprite as 

above when Min Pixel Percentage is set to 1% instead of 10%. 

○​ Check out Rules of Thumb #1 and #2 for guidance on effectively using this 

setting. 



 

●​ The right column in the Color Selection section allows you to modify any corresponding 

colors from the left column. The changes will apply to all pixels containing that same 

color or similar shades, determined by the Similarity Threshold property. Increasing this 

value broadens the range of colors considered similar. 

●​ A new color is applied to the corresponding pixels by calculating the difference between 

the original and new color and applying that difference to all affected pixels. This 

method ensures that recoloring preserves details rather than making all pixels a uniform 

color. 

●​ When the Force Closest Color toggle is disabled, a pixel’s color will only be changed if its 

similarity to the closest color in the left column is below the Similarity Threshold. If the 

pixel’s color doesn’t meet this criteria, it won’t be considered a match for any color in 

the left column, and its color will remain unchanged when modifying the colors in the 

right column. 

○​ For example, the images below show the difference in color changes when using 

different values for the Similarity Threshold. As the threshold increases, it also 

includes additional shades of the selected blue color. 



 

 

●​ Enabling the Force Closest Color toggle disables the Similarity Threshold, meaning each 

pixel will be mapped to the closest color from the left column. Misusing this option can 

lead to unintended results, so refer to Rule of Thumb #3 for proper usage guidelines. 

○​ For example, the images below show how enabling the Force Closest Color toggle 

affects recoloring blue shades. In one case, only blue is selected, causing even 

the red shades to shift toward it. In the other, a red color is also selected, so the 

red shades are mapped to that color and handled separately from the blue 

shades. 



 

 

●​ When two colors meet, blending can occur, creating pixels that are a mix of those colors. 

When we change any of the dominant colors, we want the blending pixels to be affected 

as well. This is where the Neighborhood Search Radius property comes into play. This 

property defines how many surrounding pixels will be checked to find a dominant color 

if a pixel is not similar to any of the colors. 

○​ Setting this value to 0 means that blending will not be detected at all. 

○​ Check out Rule of Thumb #4 for more details about using the Neighborhood 

Search Radius property. 



●​ For blending to work correctly, both colors involved need to be included in the left 

column of the Color Selection section. Even if you don’t want to change one of those 

colors, include it anyway to ensure that blending and recoloring of the blended pixels 

work properly. 

●​ The Blend Threshold property is used to determine whether a pixel's color is a result of 

blending between surrounding dominant colors. Increasing this value may cause some 

unwanted pixels to be considered as blends as well. In most cases, the default value 

should be sufficient. 

●​ The images below show how blending between red and white can be handled in the 

sample image. 

 



 

●​ When your colorizing is finished and you're ready to use the new sprite, click the Export 

Texture button under the output texture to save it as a PNG file and use it in your 

project. 

Rules of Thumb 
1.​ If your texture contains similar colors, use a higher Min Pixel Percentage to filter out 

minor variations. You can then manually add the necessary colors to avoid confusion. 

2.​ If you want to change a minor color, add it manually instead of adjusting Min Pixel 

Percentage. This prevents unnecessary colors from being included and ensures you only 

modify the ones you intend to. 

3.​ Enabling the Force Closest Color toggle maps each pixel to the nearest color from the 

left column, making it useful when you want to change all shades of a color at once. This 

works best for images with only a few distinct colors. For example, when recoloring all 

shades of blue while keeping all shades of red unchanged. However, in images with 

many different colors, you may need to manually add colors you don’t want to change to 

the left column to prevent unintended modifications. 

4.​ Increasing the Neighborhood Search Radius value expands the number of pixels 

checked for every pixel that is not similar to the dominant colors. This increase happens 

quadratically (9 pixels for a radius of 1, 16 for a radius of 2, etc.), so setting a higher 

value may significantly slow down the recoloring process. For most cases, a value 

between 0 and 3 should be sufficient. 



 

Contact 
- If you encounter any issues or have any questions, please feel free to contact me via email at 

smahdifaghih2001@gmail.com or connect with me on LinkedIn. 

 

Review 
- If you found EasyColorize2D helpful and enjoyed using it, I’d greatly appreciate a quick review 

and rating on the Asset Store. Your feedback not only helps me improve but also supports other 

developers in discovering this tool. Thank you for your time and support! 

mailto:smahdifaghih2001@gmail.com
https://www.linkedin.com/in/seyyedmahdifaghih/
https://assetstore.unity.com/packages/slug/315579

	EasyColorize2D Documentation 
	Table of content 
	Introduction 
	Video Guides and Tutorials 
	Where to Begin 
	Colorize Window 
	Rules of Thumb 
	 
	Contact 
	Review 


