Topology: introduction (2011)

short address for this document: https://goo.gl/Yr71Mm

-- There is a mailing list for the course; please e-mail me at levenson@gmail.com to get onto the list

== Short Program ==

- 1. Fundamental group and examples. The Kunneth Formula. Fundamental group of 2-manifolds.
- 2. Algebraic equations (in one complex variable) of degree 3, $z^3 + pz + q = 0$: topological Galois theory
- 3. Category of covers of a given space; universal cover.
- 4. First homology group: an idea.

== Bibliography, partial ==

- 1.D.B. Fuchs, V.L. Gutenmacher and A.T. Fomenko, "Homotopic topology", 1986, QA612.7 .F8413 (openlibrary.org) (Google Books) (Amazon)
- 2. Hatcher, "Algebraic topology", (online here)

== Detailed program ==

Lecture #1

* fundamental group.

Examples: * fundamental group of a circle S^1 (with proof);

relation to the complex analytic map $z \mid -> z^p$;

* pi_1 of the wedge of several circles (~ plane
minus several points);

* pi_1 of the torus:

** via uniformization $R^2 \rightarrow R^2/(Z+Z)$;

** via identification of edges of a square;

** via $T = S^1 \times S^1 --$ see the next topic.

* Guessing the Kunneth formula:

defining the maps

$$pi_1(X \times Y) \rightarrow pi_1(X) \times pi_1(Y)$$
,

 $pi_1(Y) \rightarrow pi_1(X \times Y)$.

Homework 1: Do the images commute? (They should, as the case of a torus suggests.)

Homework 2: genus 2 surface has "canonical" cycles a_1, b_1,
a 2, b 2, as discussed in class;

Study of the commutator $[a_1 b_1 a_1^{-1} b_1^{-1}]$, and "the middle section" of X.

Finish the reasoning: is this commutator trivial?

* (At the request of Yair: defining RP^2 as a space of lines in R^3 .

Homework - 3: Gluing RP^2 out of a square.

Lecture # 2

we considered the polynomial

$$f(z,t) = z^3 - 3z + 2t = 0$$

which gives a curve C in the complex plane with coordinates (z,t). C can be considered as a "universal polynomial of degree 3 in z".

C has a map to a line, $(z,t) \mid -> t$, which is a ramified cover of degree 3.

We computed the critical points and critical values of this map, and the corresponding monodromy representation

$$\pi_1$$
(C - {2 points}) -> Sym_3

which we proved to be epimorphic.

At a later point we will discuss the relation of this maps with the algebraic problem of solving equations of degree 3.

Lecture #3

We discussed the notion of smooth manifold and the classification of smooth oriented (compact) manifolds of dimension two; they are classified by one integer, the genus g.

Let X_g be such a surface of genus g. We computed previously the fundamental group of a torus X_1 , and this time the fundamental group of the X_2 , in 2 ways:

(a) by studying the connected sum of 2 toruses, $X_2 = X_1 \# X$ 1

(Meanwhile, we discussed the operation of a connected sum of manifolds. Remark: the Wikipedia article on "Connected sum" is rather good".)

(b) by gluing X_2 out of a polygon with 8 sides (in "the standard way").

Homework 4:

- (1) compute pi_1(RP^2)
- (2) for two spaces X,Y, we constructed the maps

Prove that their images commute.

(We also constructed maps

(3) * compute the commutator of the group G = pi_1 (X 2) for a genus 2 (compact orientable) surface X.

Lecture # 4

1) We continued study of the fundamental group of a sphere with two handles (genus 2 surface, let us call it X 2):

we computed its abelianization ($pi_1 / [pi_1, pi_1]$), introduced the first homology group H_1 as the abelianization pi_1 (note that this is not the standard/usual definition), and discussed its geometric meaning (rather briefly)

(2) We discussed the projective plane RP^2 in details (as a moduli of lines in R^3; as a factor of S^2 by an involution; as a result of gluing of opposite sides of a square; and by obtaining it from upper hemi-sphere by identifying opposite points on the equator circle).

We computed the fundamental group pi_1 (isomorphic to $\mathbb{Z}/2$) in two different models.

We also gave an interpretation of the non-trivial element of fundamental group of RP^2 in terms of rotations of lines (we start rotating a sphere until 2 opposite points get exchanged, and lines joining them switches its orientation); thus we constructed a non-trivial element in the group SO(3) which we also discussed.

Lecture # 5

1. Let p: X -> Y be a cover with a fiber F, (where Y is connected). We discussed the map

 $p_*: pi_1(X) \rightarrow pi_1(Y)$, and proved the "exact sequence"

(the first two terms are groups, and the last one, the fiber F, is a set with a fixed point.)

We also proved that X is connected if and only if the last map is an epimorphism (of sets).

All this makes sense after we fix a point x in X, y in Y (x is over y), the fiber $F = F_y$ and the fundamental groups are computed with respect to the base points x and y.

We then gave a definition of regular (or Galois, or normal) covers.

We then discussed two problems: given X, describe all covers X -> Y; and, given Y, describe all covers X -> Y.

For the second problem, we constructed the map

 ϕ : (covers p: X -> Y for a fixed Y) ->

(subgroups in pi_1(Y)),

where phi(p) = pi 1(X) as a subgroup of pi 1(Y).

Lecture # 6

- * topological characterization of normal covers $X \to Y$: a loop in Y, given a point x in the fiber F_y , lifts either to a loop for each x, or to a path (for each x), but not both ways for various points in F_y ;
- * correspondence (covers) <-> subgroups requires subgroup {1}, i.e., existence of the universal cover;
 - * we constructed the universal cover;
- * We constructed a regular cover $H \to H/Gamma$ for a free action of a group Gamma (with a particular case of universal cover).