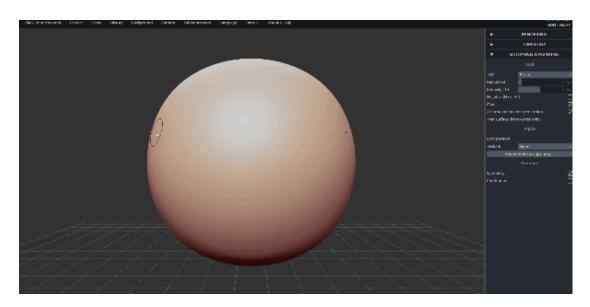
Introduction to 3D Modeling

Go to: SculptGL - https://stephaneginier.com/sculptgl/

Getting *oriented* in 3D modeling can feel a little weird at first. So let's talk about what it means. Picking up a physical object in front of you, can you turn it around in your hands? This is you changing the object's *orientation*.

Orientation: the position or direction of something. (the way an object is facing)


Step 1: Draw a Smiley Face

(This lets you know where the front facing orientation of your object is, this is important for building our models)

Using the left-mouse button, you can sculpt a smiley face into your sphere.

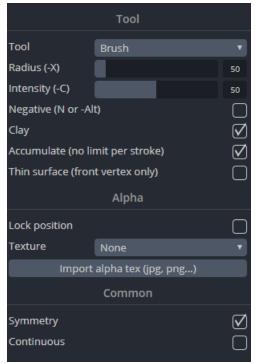
Other tips that might be useful:

- Holding Alt while you draw makes your sculpting *negative* (it cuts into the sphere, rather than building up onto it).
- Ctrl+Z (like always) can *undo* a mistake you make.

Now we're going to move our sphere around.

To change the orientation of your sphere, **Right-click + move your mouse.**

Step 2: Rotate the sphere



Some other useful orientation keys:

- Left to Right arrow will pan (move horizontally) over your model
- Rolling the mouse wheel, or the Up and Down arrows will zoom in and out.
- Clicking and holding the mouse wheel will let you pan up, down, left, and right across your model.

Step 3: The Brush Tool

The tool we used to draw our smile was called the brush tool. You can see this in the panel on the right along with a lot of checkboxes.

Here is a summary of some of the more useful options for the brush tool:

Tool	Description	Illustration
Radius	Changes the size of the "brush" you use to build onto your shape.	
Intensity	Changes the amount of "virtual clay" the brush adds (or subtracts) from your model.	
Negative	Makes the brush "carve in" to the shape rather that "build out" of it.	

Step 4: The Drag Tool

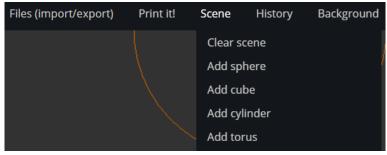
The drag tool is an important tool that helps us stretch our sphere into different shapes. To change a tool, go to the top of the panel and select the tool menu. You'll find Drag listed as eighth. You can change the radius to change the area that you are dragging.

Step 6: Exploring Other Tools

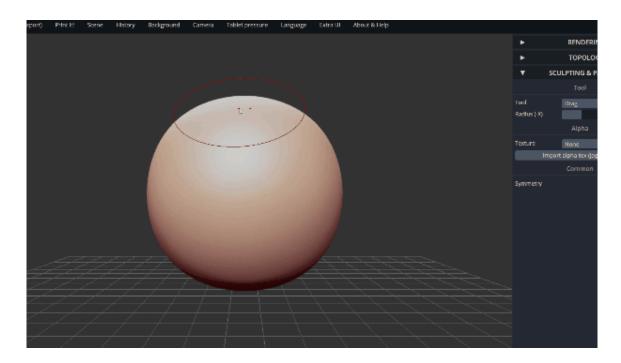
Explore the other tools like **inflate, twist, flatten, smooth,** and **paint.** They work similarly to the above-described tools, but each has a different function.

Step 7: Creating "Humanoid" Figures

For our next step, we're going to be creating a 3D figure that we can animate. For this step, we're going to be using a program called **Mixamo** (https://www.mixamo.com/). For Mixamo to work we have to create a "humanoid" figure that it can "rig" with an animation skeleton.


Humanoid - In animation software, "humanoid" means a figure has two legs, two arms, a torso, and a head. (Even though *there are plenty of humans* who don't have two arms and legs. And some non-human things that have two arms and two legs...)

Let's try creating a monster-like figure that has two upper limbs, two lower limbs, a torso, and a head.


Note: The head cannot be in the belly (aka no Kool-aid man). This is because the "humanoid" animation skeleton needs different points for the "chin" and the "groin" parts of the body.

For now, let's just make a simple Turtle Dude! In the menu bar, go to **Scene-> Clear Scene** then **Scene -> Add Sphere**

- 1. Select the Drag Tool.
- 2. Turn on Symmetry.
- 3. Make two arms, two legs, and a head at the top.

Step 7: Export

At the top menu, go to: **File > Save .obj** (which stands for "**object file**"). This will download a file called **yourMesh.obj** (but you should **give it a more descriptive name!**). Save it to a folder where you can find it later (I usually make a folder on my desktop).

Then go to **File > Save diffuse** (which is a 3D modeling term for surface color - since color results when white light is "diffused" by a surface). This will save a **PNG** image file of the colors for use later.

(IF YOU GET AN ERROR THAT SAYS "The Selected Mesh has No UV!" No worries. Jst **Save .ply** instead. This format isn't as compatible with our other tools, but we have some <u>tutorials</u> for later on how to extract the colors from a PLY file and make it usable!)